-
2
-
-
84867887505
-
Diverse M-best solutions in Markov random fields
-
Batra, D., Yadollahpour, P., Guzmán-Rivera, A., & Shakhnarovich, G. (2012). Diverse M-Best Solutions in Markov Random Fields. In Proceedings of European Conference on Computer Vision (ECCV), pp. 1-16.
-
(2012)
Proceedings of European Conference on Computer Vision (ECCV)
, pp. 1-16
-
-
Batra, D.1
Yadollahpour, P.2
Guzmán-Rivera, A.3
Shakhnarovich, G.4
-
3
-
-
24044449704
-
Learning evaluation functions to improve optimization by local search
-
(JMLR)
-
Boyan, J. A., & Moore, A. W. (2000). Learning Evaluation Functions to Improve Optimization by Local Search. Journal of Machine Learning Research (JMLR), 1, 77-112.
-
(2000)
Journal of Machine Learning Research
, vol.1
, pp. 77-112
-
-
Boyan, J.A.1
Moore, A.W.2
-
4
-
-
84867919822
-
Transformation-based error-driven learning and natural language processing: A case study in part-of-speech tagging
-
Brill, E. (1995). Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part-of-Speech Tagging. Computational Linguistics, 21 (4), 543-565.
-
(1995)
Computational Linguistics
, vol.21
, Issue.4
, pp. 543-565
-
-
Brill, E.1
-
5
-
-
84902787899
-
A constrained latent variable model for coreference resolution
-
Chang, K.-W., Samdani, R., & Roth, D. (2013). A Constrained Latent Variable Model for Coreference Resolution. In Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 601-612.
-
(2013)
Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP)
, pp. 601-612
-
-
Chang, K.-W.1
Samdani, R.2
Roth, D.3
-
6
-
-
84865223146
-
Structured learning with constrained conditional models
-
Chang, M.-W., Ratinov, L.-A., & Roth, D. (2012). Structured Learning with Constrained Conditional Models. Machine Learning Journal (MLJ), 88 (3), 399-431.
-
(2012)
Machine Learning Journal (MLJ)
, vol.88
, Issue.3
, pp. 399-431
-
-
Chang, M.-W.1
Ratinov, L.-A.2
Roth, D.3
-
7
-
-
84937835781
-
Computing the M most probable modes of a graphical model
-
Chen, C., Kolmogorov, V., Zhu, Y., Metaxas, D., & Lampert, C. H. (2013). Computing the M Most Probable Modes of a Graphical Model. In Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS).
-
(2013)
Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS)
-
-
Chen, C.1
Kolmogorov, V.2
Zhu, Y.3
Metaxas, D.4
Lampert, C.H.5
-
10
-
-
85045072379
-
Ranking algorithms for named entity extraction: Boosting and the voted perceptron
-
Collins, M. (2002). Ranking Algorithms for Named Entity Extraction: Boosting and the Voted Perceptron. In ACL.
-
(2002)
ACL
-
-
Collins, M.1
-
11
-
-
33646371466
-
Online passive-aggressive algorithms
-
Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006). Online Passive-Aggressive Algorithms. Journal of Machine Learning Research (JMLR), 7, 551-585. (Pubitemid 43668115)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 551-585
-
-
Crammer, K.1
Dekel, O.2
Keshet, J.3
Shalev-Shwartz, S.4
Singer, Y.5
-
13
-
-
31844433245
-
Learning as search optimization: Approximate large margin methods for structured prediction
-
Daumé III, H., & Marcu, D. (2005). Learning as Search Optimization: Approximate Large margin methods for Structured Prediction. In ICML.
-
(2005)
ICML
-
-
Daumé III, H.1
Marcu, D.2
-
14
-
-
0037878134
-
A comparison of ID3 and backpropagation for english text-to-speech mapping
-
Dietterich, T. G., Hild, H., & Bakiri, G. (1995). A Comparison of ID3 and Backpropagation for English Text-to-Speech Mapping. Machine Learning Journal (MLJ), 18 (1), 51-80.
-
(1995)
Machine Learning Journal (MLJ)
, vol.18
, Issue.1
, pp. 51-80
-
-
Dietterich, T.G.1
Hild, H.2
Bakiri, G.3
-
18
-
-
84901623144
-
Structured prediction via output space search
-
Doppa, J. R., Fern, A., & Tadepalli, P. (2014a). Structured Prediction via Output Space Search. Journal of Machine Learning Research (JMLR), 15, 1317-1350.
-
(2014)
Journal of Machine Learning Research (JMLR)
, vol.15
, pp. 1317-1350
-
-
Doppa, J.R.1
Fern, A.2
Tadepalli, P.3
-
19
-
-
84908179082
-
HC-search for multi-label prediction: An empirical study
-
To appear
-
Doppa, J. R., Yu, J., Ma, C., Fern, A., & Tadepalli, P. (2014b). HC-Search for Multi-Label Prediction: An Empirical Study. In To appear in Proceedings of AAAI Conference on Artificial Intelligence (AAAI).
-
(2014)
Proceedings of AAAI Conference on Artificial Intelligence (AAAI)
-
-
Doppa, J.R.1
Yu, J.2
Ma, C.3
Fern, A.4
Tadepalli, P.5
-
20
-
-
84880213822
-
Chance-constrained programs for link prediction
-
Doppa, J. R., Yu, J., Tadepalli, P., & Getoor, L. (2009). Chance-Constrained Programs for Link Prediction. In Proceedings of NIPS Workshop on Analyzing Networks and Learning with Graphs.
-
(2009)
Proceedings of NIPS Workshop on Analyzing Networks and Learning with Graphs
-
-
Doppa, J.R.1
Yu, J.2
Tadepalli, P.3
Getoor, L.4
-
21
-
-
78049322989
-
Learning algorithms for link prediction based on chance constraints
-
Doppa, J. R., Yu, J., Tadepalli, P., & Getoor, L. (2010). Learning Algorithms for Link Prediction based on Chance Constraints. In Proceedings of European Conference on Machine Learning (ECML), pp. 344-360.
-
(2010)
Proceedings of European Conference on Machine Learning (ECML)
, pp. 344-360
-
-
Doppa, J.R.1
Yu, J.2
Tadepalli, P.3
Getoor, L.4
-
24
-
-
33744466799
-
Approximate policy iteration with a policy language bias: Solving relational markov decision processes
-
Fern, A., Yoon, S. W., & Givan, R. (2006). Approximate Policy Iteration with a Policy Language Bias: Solving Relational Markov Decision Processes. Journal of Artificial Intelligence Research (JAIR), 25, 75-118. (Pubitemid 43800043)
-
(2006)
Journal of Artificial Intelligence Research
, vol.25
, pp. 75-118
-
-
Fern, A.1
Yoon, S.2
Givan, R.3
-
27
-
-
67349244372
-
Search-based structured prediction
-
Hal Daumé III, Langford, J., & Marcu, D. (2009). Search-based Structured Prediction. Machine Learning Journal (MLJ), 75 (3), 297-325.
-
(2009)
Machine Learning Journal (MLJ)
, vol.75
, Issue.3
, pp. 297-325
-
-
Daumé III, H.1
Langford, J.2
Marcu, D.3
-
29
-
-
84886453219
-
Efficient learning of structured predictors in general graphical models
-
abs/1210.2346
-
Hazan, T., & Urtasun, R. (2012). Efficient Learning of Structured Predictors in General Graphical Models. CoRR, abs/1210.2346.
-
(2012)
CoRR
-
-
Hazan, T.1
Urtasun, R.2
-
30
-
-
0029255662
-
Robust trainability of single neurons
-
Hogen, K.-U., Simon, H.-U., & Horn, K. S. V. (1995). Robust Trainability of Single Neurons. Journal of Computer and System Sciences, 50 (1), 114-125.
-
(1995)
Journal of Computer and System Sciences
, vol.50
, Issue.1
, pp. 114-125
-
-
Hogen, K.-U.1
Simon, H.-U.2
Horn, K.S.V.3
-
31
-
-
84926138135
-
Structured perceptron with inexact search
-
Huang, L., Fayong, S., & Guo, Y. (2012). Structured Perceptron with Inexact Search. In Proceedings of Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics (HLT-NAACL), pp. 142-151.
-
(2012)
Proceedings of Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics (HLT-NAACL)
, pp. 142-151
-
-
Huang, L.1
Fayong, S.2
Guo, Y.3
-
32
-
-
84877766649
-
Learned prioritization for trading off accuracy and speed
-
Jiang, J., Teichert, A., Daumé III, H., & Eisner, J. (2012). Learned Prioritization for Trading Off Accuracy and Speed. In Proceedings of Advances in Neural Information Processing (NIPS).
-
(2012)
Proceedings of Advances in Neural Information Processing (NIPS)
-
-
Jiang, J.1
Teichert, A.2
Daumé III, H.3
Eisner, J.4
-
34
-
-
33745211420
-
Phoneme alignment based on discriminative learning
-
Keshet, J., Shalev-Shwartz, S., Singer, Y., & Chazan, D. (2005). Phoneme Alignment based on Discriminative Learning. In Proceedings of Annual Conference of the International Speech Communication Association (Interspeech), pp. 2961-2964.
-
(2005)
Proceedings of Annual Conference of the International Speech Communication Association (Interspeech)
, pp. 2961-2964
-
-
Keshet, J.1
Shalev-Shwartz, S.2
Singer, Y.3
Chazan, D.4
-
35
-
-
0032649290
-
Learning to take actions
-
Khardon, R. (1999). Learning to Take Actions. Machine Learning Journal (MLJ), 35 (1), 57-90.
-
(1999)
Machine Learning Journal (MLJ)
, vol.35
, Issue.1
, pp. 57-90
-
-
Khardon, R.1
-
36
-
-
84874080932
-
Determinantal point processes for machine learning
-
Kulesza, A., & Taskar, B. (2012). Determinantal Point Processes for Machine Learning. Foundations and Trends in Machine Learning, 5 (2-3), 123-286.
-
(2012)
Foundations and Trends in Machine Learning
, vol.5
, Issue.2-3
, pp. 123-286
-
-
Kulesza, A.1
Taskar, B.2
-
37
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of International Conference on Machine Learning (ICML), pp. 282-289.
-
(2001)
Proceedings of International Conference on Machine Learning (ICML)
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
38
-
-
84897515570
-
Learning to detect basal tubules of nematocysts in SEM images
-
IEEE
-
Lam, M., Doppa, J. R., Hu, X., Todorovic, S., Dietterich, T., Reft, A., & Daly, M. (2013). Learning to Detect Basal Tubules of Nematocysts in SEM Images. In ICCV Workshop on Computer Vision for Accelerated Biosciences (CVAB). IEEE.
-
(2013)
ICCV Workshop on Computer Vision for Accelerated Biosciences (CVAB)
-
-
Lam, M.1
Doppa, J.R.2
Hu, X.3
Todorovic, S.4
Dietterich, T.5
Reft, A.6
Daly, M.7
-
39
-
-
84894653924
-
Joint event extraction via structured prediction with global features
-
Li, Q., Ji, H., & Huang, L. (2013). Joint Event Extraction via Structured Prediction with Global Features. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (ACL), pp. 73-82.
-
(2013)
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (ACL)
, pp. 73-82
-
-
Li, Q.1
Ji, H.2
Huang, L.3
-
40
-
-
85162488701
-
Direct loss minimization for structured prediction
-
McAllester, D. A., Hazan, T., & Keshet, J. (2010). Direct Loss Minimization for Structured Prediction. In Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 1594-1602.
-
(2010)
Proceedings of Advances in Neural Information Processing Systems (NIPS)
, pp. 1594-1602
-
-
McAllester, D.A.1
Hazan, T.2
Keshet, J.3
-
41
-
-
77956556288
-
Learning efficiently with approximate inference via dual losses
-
Meshi, O., Sontag, D., Jaakkola, T., & Globerson, A. (2010). Learning Efficiently with Approximate Inference via Dual Losses. In Proceedings of International Conference on Machine Learning (ICML), pp. 783-790.
-
(2010)
Proceedings of International Conference on Machine Learning (ICML)
, pp. 783-790
-
-
Meshi, O.1
Sontag, D.2
Jaakkola, T.3
Globerson, A.4
-
42
-
-
84858045252
-
Web-search ranking with initialized gradient boosted regression trees
-
Mohan, A., Chen, Z., & Weinberger, K. Q. (2011). Web-Search Ranking with Initialized Gradient Boosted Regression trees. Journal of Machine Learning Research - Proceed-ings Track, 14, 77-89.
-
(2011)
Journal of Machine Learning Research - Proceed-ings Track
, vol.14
, pp. 77-89
-
-
Mohan, A.1
Chen, Z.2
Weinberger, K.Q.3
-
43
-
-
57349126314
-
Algorithms for deterministic incremental dependency parsing
-
Nivre, J. (2008). Algorithms for Deterministic Incremental Dependency Parsing. Computational Linguistics, 34 (4), 513-553.
-
(2008)
Computational Linguistics
, vol.34
, Issue.4
, pp. 513-553
-
-
Nivre, J.1
-
45
-
-
84879983409
-
SLEDGE: Sequential labeling of image edges for boundary detection
-
Payet, N., & Todorovic, S. (2013). SLEDGE: Sequential Labeling of Image Edges for Boundary Detection. International Journal of Computer Vision (IJCV), 104 (1), 15-37.
-
(2013)
International Journal of Computer Vision (IJCV)
, vol.104
, Issue.1
, pp. 15-37
-
-
Payet, N.1
Todorovic, S.2
-
46
-
-
71149101799
-
Sparse higher order conditional random fields for improved sequence labeling
-
Qian, X., Jiang, X., Zhang, Q., Huang, X., & Wu, L. (2009). Sparse Higher Order Conditional Random Fields for Improved Sequence Labeling. In Proceedings of International Conference on Machine Learning (ICML).
-
(2009)
Proceedings of International Conference on Machine Learning (ICML)
-
-
Qian, X.1
Jiang, X.2
Zhang, Q.3
Huang, X.4
Wu, L.5
-
47
-
-
83155175374
-
Classifier chains for multi-label classification
-
Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier Chains for Multi-Label Classification. Machine Learning, 85 (3), 333-359.
-
(2011)
Machine Learning
, vol.85
, Issue.3
, pp. 333-359
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
49
-
-
84862273266
-
A reduction of imitation learning and structured prediction to no-regret online learning
-
Ross, S., Gordon, G. J., & Bagnell, D. (2011). A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning. Journal of Machine Learning Research - Proceedings Track, 15, 627-635.
-
(2011)
Journal of Machine Learning Research - Proceedings Track
, vol.15
, pp. 627-635
-
-
Ross, S.1
Gordon, G.J.2
Bagnell, D.3
-
52
-
-
53749083869
-
Collective classification in network data
-
Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., & Eliassi-Rad, T. (2008). Collective Classification in Network Data. AI Magazine, 29 (3), 93-106.
-
(2008)
AI Magazine
, vol.29
, Issue.3
, pp. 93-106
-
-
Sen, P.1
Namata, G.2
Bilgic, M.3
Getoor, L.4
Gallagher, B.5
Eliassi-Rad, T.6
-
53
-
-
85162059405
-
More data means less inference: A pseudo-max approach to structured learning
-
Sontag, D., Meshi, O., Jaakkola, T., & Globerson, A. (2010). More data means less inference: A pseudo-max approach to structured learning. In Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 2181-2189.
-
(2010)
Proceedings of Advances in Neural Information Processing Systems (NIPS)
, pp. 2181-2189
-
-
Sontag, D.1
Meshi, O.2
Jaakkola, T.3
Globerson, A.4
-
55
-
-
84862282438
-
Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure
-
Stoyanov, V., Ropson, A., & Eisner, J. (2011). Empirical Risk Minimization of Graphical Model Parameters Given Approximate Inference, Decoding, and Model Structure. In Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 725-733.
-
(2011)
Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS)
, pp. 725-733
-
-
Stoyanov, V.1
Ropson, A.2
Eisner, J.3
-
56
-
-
72449149168
-
Piecewise training for structured prediction
-
Sutton, C. A., & McCallum, A. (2009). Piecewise Training for Structured Prediction. Machine Learning Journal (MLJ), 77 (2-3), 165-194.
-
(2009)
Machine Learning Journal (MLJ)
, vol.77
, Issue.2-3
, pp. 165-194
-
-
Sutton, C.A.1
McCallum, A.2
-
59
-
-
14344250451
-
Support vector machine learning for interdependent and structured output spaces
-
Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2004). Support Vector Machine Learning for Interdependent and Structured Output Spaces. In Proceedings of International Conference on Machine Learning (ICML).
-
(2004)
Proceedings of International Conference on Machine Learning (ICML)
-
-
Tsochantaridis, I.1
Hofmann, T.2
Joachims, T.3
Altun, Y.4
-
60
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large Margin Methods for Structured and Interdependent Output Variables. Journal of Machine Learning Research (JMLR), 6, 1453-1484.
-
(2005)
Journal of Machine Learning Research (JMLR)
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
61
-
-
33846249578
-
Semantic modeling of natural scenes for content-based image retrieval
-
DOI 10.1007/s11263-006-8614-1
-
Vogel, J., & Schiele, B. (2007). Semantic Modeling of Natural Scenes for Content-Based Image Retrieval. International Journal of Computer Vision (IJCV), 72 (2), 133-157. (Pubitemid 46094757)
-
(2007)
International Journal of Computer Vision
, vol.72
, Issue.2
, pp. 133-157
-
-
Vogel, J.1
Schiele, B.2
-
63
-
-
85162056906
-
Sidestepping intractable inference with structured ensemble cascades
-
Weiss, D., Sapp, B., & Taskar, B. (2010). Sidestepping Intractable Inference with Structured Ensemble Cascades. In Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 2415-2423.
-
(2010)
Proceedings of Advances in Neural Information Processing Systems (NIPS)
, pp. 2415-2423
-
-
Weiss, D.1
Sapp, B.2
Taskar, B.3
-
65
-
-
80053457712
-
SampleRank: Training factor graphs with atomic gradients
-
Wick, M. L., Rohanimanesh, K., Bellare, K., Culotta, A., & McCallum, A. (2011). SampleRank: Training Factor Graphs with Atomic Gradients. In Proceedings of International Conference on Machine Learning (ICML).
-
(2011)
Proceedings of International Conference on Machine Learning (ICML)
-
-
Wick, M.L.1
Rohanimanesh, K.2
Bellare, K.3
Culotta, A.4
McCallum, A.5
-
66
-
-
84863373780
-
Training factor graphs with reinforcement learning for efficient MAP inference
-
Wick, M. L., Rohanimanesh, K., Singh, S., & McCallum, A. (2009). Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference. In Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 2044-2052.
-
(2009)
Proceedings of Advances in Neural Information Processing Systems (NIPS)
, pp. 2044-2052
-
-
Wick, M.L.1
Rohanimanesh, K.2
Singh, S.3
McCallum, A.4
-
67
-
-
68949158542
-
Learning linear ranking functions for beam search with application to planning
-
Xu, Y., Fern, A., & Yoon, S. (2009a). Learning Linear Ranking Functions for Beam Search with Application to planning. The Journal of Machine Learning Research, 10, 1571-1610.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 1571-1610
-
-
Xu, Y.1
Fern, A.2
Yoon, S.3
-
68
-
-
68949158542
-
Learning linear ranking functions for beam search with application to planning
-
Xu, Y., Fern, A., & Yoon, S. W. (2009b). Learning Linear Ranking Functions for Beam Search with Application to Planning. Journal of Machine Learning Research (JMLR), 10, 1571-1610.
-
(2009)
Journal of Machine Learning Research (JMLR)
, vol.10
, pp. 1571-1610
-
-
Xu, Y.1
Fern, A.2
Yoon, S.W.3
-
69
-
-
78650596903
-
Iterative learning of weighted rule sets for greedy search
-
Xu, Y., Fern, A., & Yoon, S. W. (2010). Iterative Learning of Weighted Rule Sets for Greedy Search. In Proceedings of International Conference on Automated Planning and Systems (ICAPS), pp. 201-208.
-
(2010)
Proceedings of International Conference on Automated Planning and Systems (ICAPS)
, pp. 201-208
-
-
Xu, Y.1
Fern, A.2
Yoon, S.W.3
-
71
-
-
84863390359
-
Conditional random fields with high-order features for sequence labeling
-
Ye, N., Lee, W. S., Chieu, H. L., & Wu, D. (2009). Conditional Random Fields with High-Order Features for Sequence Labeling. In Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 2196-2204.
-
(2009)
Proceedings of Advances in Neural Information Processing Systems (NIPS)
, pp. 2196-2204
-
-
Ye, N.1
Lee, W.S.2
Chieu, H.L.3
Wu, D.4
-
72
-
-
84926305651
-
Max-violation perceptron and forced decoding for scalable mt training
-
Yu, H., Huang, L., Mi, H., & Zhao, K. (2013). Max-Violation Perceptron and Forced Decoding for Scalable MT Training. In Proceedings of Empirical Methods in Natural Language Processing (EMNLP), pp. 1112-1123.
-
(2013)
Proceedings of Empirical Methods in Natural Language Processing (EMNLP)
, pp. 1112-1123
-
-
Yu, H.1
Huang, L.2
Mi, H.3
Zhao, K.4
|