메뉴 건너뛰기




Volumn 24, Issue 3, 2014, Pages 223-233

Data-driven soft sensor development based on deep learning technique

Author keywords

Data driven technique; Deep neural network; Nonlinear regression; Soft sensor

Indexed keywords

DEEP NEURAL NETWORKS; DISTILLATION; DISTILLATION EQUIPMENT; LEARNING SYSTEMS; MULTILAYER NEURAL NETWORKS; SEMI-SUPERVISED LEARNING;

EID: 84894261826     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2014.01.012     Document Type: Article
Times cited : (492)

References (29)
  • 2
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • P. Kadlec, B. Gabrys, and S. Strandt Data-driven soft sensors in the process industry Comput. Chem. Eng. 33 2009 795 814
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 3
    • 77956444702 scopus 로고    scopus 로고
    • The state of the art in chemical process control in Japan: Good practice and questionnaire survey
    • M. Kano, and M. Ogawa The state of the art in chemical process control in Japan: good practice and questionnaire survey J. Process Control 20 2010 969 982
    • (2010) J. Process Control , vol.20 , pp. 969-982
    • Kano, M.1    Ogawa, M.2
  • 4
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis-based on principal curves and neural networks
    • D. Dong, and T.J. McAvoy Nonlinear principal component analysis-based on principal curves and neural networks Comput. Chem. Eng. 20 1996 65 78
    • (1996) Comput. Chem. Eng. , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 5
    • 0000325341 scopus 로고
    • LIII. on lines and planes of closest fit to systems of points in space
    • K. Pearson LIII. On lines and planes of closest fit to systems of points in space Lond. Edin. Dub. Philos. Mag. J. Sci. 2 1901 559 572
    • (1901) Lond. Edin. Dub. Philos. Mag. J. Sci. , vol.2 , pp. 559-572
    • Pearson, K.1
  • 6
    • 0001098205 scopus 로고
    • Estimation of principal components and related models by iterative least squares
    • H. Wold Estimation of principal components and related models by iterative least squares Multivar. Anal. 1 1966 391 420
    • (1966) Multivar. Anal. , vol.1 , pp. 391-420
    • Wold, H.1
  • 7
    • 11144325691 scopus 로고
    • Partial least-squares regression: A tutorial
    • P. Geladi, and B.R. Kowalski Partial least-squares regression: a tutorial Anal. Chim. Acta 185 1986 1 17
    • (1986) Anal. Chim. Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 8
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • S.J. Qin Recursive PLS algorithms for adaptive data modeling Comput. Chem. Eng. 22 1998 503 514
    • (1998) Comput. Chem. Eng. , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 9
    • 0026853320 scopus 로고
    • Nonlinear PLS modeling using neural networks
    • S.J. Qin, and T.J. McAvoy Nonlinear PLS modeling using neural networks Comput. Chem. Eng. 16 1992 379 391
    • (1992) Comput. Chem. Eng. , vol.16 , pp. 379-391
    • Qin, S.J.1    McAvoy, T.J.2
  • 11
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • W.W. Yan, H.H. Shao, and X.F. Wang Soft sensing modeling based on support vector machine and Bayesian model selection Comput. Chem. Eng. 28 2004 1489 1498
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1489-1498
    • Yan, W.W.1    Shao, H.H.2    Wang, X.F.3
  • 12
    • 27444433806 scopus 로고    scopus 로고
    • Soft-sensor development for fed-batch bioreactors using support vector regression
    • K. Desai, Y. Badhe, S.S. Tambe, and B.D. Kulkarni Soft-sensor development for fed-batch bioreactors using support vector regression Biochem. Eng. J. 27 2006 225 239
    • (2006) Biochem. Eng. J. , vol.27 , pp. 225-239
    • Desai, K.1    Badhe, Y.2    Tambe, S.S.3    Kulkarni, B.D.4
  • 13
    • 0003288488 scopus 로고    scopus 로고
    • Neural networks for intelligent sensors and control - Practical issues and some solutions
    • S.J. Qin Neural networks for intelligent sensors and control - practical issues and some solutions Neural Systems for Control 1997 213
    • (1997) Neural Systems for Control , pp. 213
    • Qin, S.J.1
  • 14
    • 0034661135 scopus 로고    scopus 로고
    • A nonlinear soft sensor based on multivariate smoothing procedure for quality estimation in distillation columns
    • S. Park, and C. Han A nonlinear soft sensor based on multivariate smoothing procedure for quality estimation in distillation columns Comput. Chem. Eng. 24 2000 871 877
    • (2000) Comput. Chem. Eng. , vol.24 , pp. 871-877
    • Park, S.1    Han, C.2
  • 15
    • 11144284581 scopus 로고    scopus 로고
    • Soft sensors for product quality monitoring in debutanizer distillation columns
    • L. Fortuna, S. Graziani, and M.G. Xibilia Soft sensors for product quality monitoring in debutanizer distillation columns Control Eng. Pract. 13 2005 499 508
    • (2005) Control Eng. Pract. , vol.13 , pp. 499-508
    • Fortuna, L.1    Graziani, S.2    Xibilia, M.G.3
  • 17
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
    • G.E. Dahl, D. Yu, L. Deng, and A. Acero Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition IEEE Trans. Audio Speech Lang. Process. 20 2012 30 42
    • (2012) IEEE Trans. Audio Speech Lang. Process. , vol.20 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 19
    • 84858779990 scopus 로고    scopus 로고
    • A scalable hierarchical distributed language model
    • A. Mnih, and G.E. Hinton A scalable hierarchical distributed language model Adv. Neural Inf. Process. Syst. 21 2009 1081 1088
    • (2009) Adv. Neural Inf. Process. Syst. , vol.21 , pp. 1081-1088
    • Mnih, A.1    Hinton, G.E.2
  • 20
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio Learning deep architectures for AI Found. Trends Mach. Learn. 2 2009 1 127
    • (2009) Found. Trends Mach. Learn. , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 24
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G.E. Hinton, S. Osindero, and Y.-W. Teh A fast learning algorithm for deep belief nets Neural Comput. 18 2006 1527 1554
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 25
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G.E. Hinton, and R.R. Salakhutdinov Reducing the dimensionality of data with neural networks Science 313 2006 504 507
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 27
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • G.E. Hinton A practical guide to training restricted Boltzmann machines Momentum 9 2010 1
    • (2010) Momentum , vol.9 , pp. 1
    • Hinton, G.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.