메뉴 건너뛰기




Volumn 27, Issue 1, 2012, Pages 729-742

Neural network approach for a combined performance and mechanical health monitoring of a gas turbine engine

Author keywords

Health Monitoring; Neural Networks; Power Turbine

Indexed keywords

GAS TURBINE ENGINE; HEALTH MONITORING; POWER TURBINES; STEADY STATE; TRANSIENT OPERATION; WHOLE PROCESS;

EID: 82255162656     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2011.09.011     Document Type: Article
Times cited : (68)

References (13)
  • 1
    • 77953213468 scopus 로고    scopus 로고
    • A novel approach for gas turbine condition monitoring combining cusum technique and artificial neural network
    • June 812, Florida, USA
    • Magnus Fast, Thomas Palme, Magnus Genrup, A novel approach for gas turbine condition monitoring combining cusum technique and artificial neural network, in: Proceedings of the ASME Turbo Expo 2009, June 812, Florida, USA, 2009.
    • (2009) Proceedings of the ASME Turbo Expo 2009
    • Fast, M.1    Palme, T.2    Genrup, M.3
  • 2
    • 0043133782 scopus 로고    scopus 로고
    • A Gas Turbine Diagnostic Approach with Transient Measurements
    • Y.G. Li, A Gas Turbine Diagnostic Approach with Transient Measurements, IMechE, 2003.
    • (2003) IMechE
    • Li, Y.G.1
  • 7
    • 0036998092 scopus 로고    scopus 로고
    • Performance modeling methodology: Efficiency definitions for cooled single and multistage turbines
    • Amsterdam
    • Joachim Kurzke, Performance modeling methodology: efficiency definitions for cooled single and multistage turbines, in: Proceedings of the ASME Turbo Expo 2002, Amsterdam, 2002.
    • (2002) Proceedings of the ASME Turbo Expo 2002
    • Kurzke, J.1
  • 10
    • 2142650152 scopus 로고    scopus 로고
    • Gas turbine diagnostics using artificial neural networks for a high bypass ratio military turbofan engine
    • R.B. Joly, S.O.T. Ogaji, R. Singh, and S.D. Probert Gas turbine diagnostics using artificial neural networks for a high bypass ratio military turbofan engine Appl. Energy 78 4 2004
    • (2004) Appl. Energy , vol.78 , Issue.4
    • Joly, R.B.1    Ogaji, S.O.T.2    Singh, R.3    Probert, S.D.4
  • 11
    • 55149103024 scopus 로고    scopus 로고
    • Constructing multilayer feed forward neural networks to approximate nonlinear functions in engineering mechanics application
    • Jin-Song Pie, and Eric C. Mai Constructing multilayer feed forward neural networks to approximate nonlinear functions in engineering mechanics application ASME J. Appl. Mech. 75 2008
    • (2008) ASME J. Appl. Mech. , vol.75
    • Pie, J.-S.1    Mai, E.C.2
  • 12
    • 34848896254 scopus 로고    scopus 로고
    • Artificial intelligence for the diagnostics of gas turbine - Part 1: Neural network approach
    • R. Bettocchi, M. Pinelli, P.R. Spina, and M. Venturini Artificial intelligence for the diagnostics of gas turbine - part 1: neural network approach J. Eng. Gas Turbine Power 129 2007
    • (2007) J. Eng. Gas Turbine Power , vol.129
    • Bettocchi, R.1    Pinelli, M.2    Spina, P.R.3    Venturini, M.4
  • 13
    • 2142771128 scopus 로고    scopus 로고
    • 1st Edition, University Science Press 78-81-318-0466-7
    • T.N. Shankar, Neural Networks, 1st Edition, University Science Press, 2008, 78-81-318-0466-7.
    • (2008) Neural Networks
    • Shankar, T.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.