-
1
-
-
63049123697
-
The validity of readmission rate as a marker of the quality of hospital care, and a recommendation for its definition
-
Rumball-Smith J, Hider P. The validity of readmission rate as a marker of the quality of hospital care, and a recommendation for its definition. NZ Med J (Online). 2009;122:1289.
-
(2009)
NZ Med J (Online)
, vol.122
, pp. 1289
-
-
Rumball-Smith, J.1
Hider, P.2
-
2
-
-
63849134505
-
Rehospitalizations among patients in the Medicare fee-for-service program
-
COI: 1:CAS:528:DC%2BD1MXjvFGju7c%3D, PID: 19339721
-
Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the Medicare fee-for-service program. N Engl J Med. 2009;360(14):1418–28.
-
(2009)
N Engl J Med
, vol.360
, Issue.14
, pp. 1418-1428
-
-
Jencks, S.F.1
Williams, M.V.2
Coleman, E.A.3
-
3
-
-
1242284342
-
Readmission to hospital: a measure of quality or outcome?
-
COI: 1:STN:280:DC%2BD2c%2FlslSnug%3D%3D, PID: 14757792
-
Clarke A. Readmission to hospital: a measure of quality or outcome? Qual Saf Health Care. 2004;13(1):10–1.
-
(2004)
Qual Saf Health Care
, vol.13
, Issue.1
, pp. 10-11
-
-
Clarke, A.1
-
5
-
-
85007512899
-
Reducing readmission in the hospital through integrated care cycle
-
Kar, Sujoy. Reducing readmission in the hospital through integrated care cycle. In: Open forum by Harvard Business School. 2014. https://openforum.hbs.org/challenge/hbs-hms-health-acceleration-challenge/innovations/reducing-readmission-in-the-hospital-through-integrated-care-cycle. Accessed 10 Jan 2016
-
(2014)
Open forum by Harvard Business School
-
-
Kar, S.1
-
7
-
-
85007526279
-
Khatri SK. Big data analytics in Indian healthcare system—opportunities and challenges. National Conference on Computing
-
Duggal R, Shukla B, Khatri SK. Big data analytics in Indian healthcare system—opportunities and challenges. National Conference on Computing, Communication and Information Processing. 2015; doi:NCCIP2015/NERIST/02/03-05-2015/CP28.
-
(2015)
Communication and Information Processing
-
-
Duggal, R.1
Shukla, B.2
-
8
-
-
80054764509
-
Risk prediction models for hospital readmission: a systematic review
-
COI: 1:CAS:528:DC%2BC3MXhtlKgs73J, PID: 22009101
-
Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M, et al. Risk prediction models for hospital readmission: a systematic review. JAMA. 2011;306(15):1688–98.
-
(2011)
JAMA
, vol.306
, Issue.15
, pp. 1688-1698
-
-
Kansagara, D.1
Englander, H.2
Salanitro, A.3
Kagen, D.4
Theobald, C.5
Freeman, M.6
-
9
-
-
0041667943
-
Multiple hospitalizations for patients with diabetes
-
PID: 12716799
-
Jiang HJ, Stryer D, Friedman B, Andrews R. Multiple hospitalizations for patients with diabetes. Diabetes Care. 2003;26(5):1421–6.
-
(2003)
Diabetes Care
, vol.26
, Issue.5
, pp. 1421-1426
-
-
Jiang, H.J.1
Stryer, D.2
Friedman, B.3
Andrews, R.4
-
10
-
-
78649488778
-
Scheduled and unscheduled hospital readmissions among diabetes patients
-
PID: 20964472
-
Kim H, Ross JS, Melkus GD, Zhao Z, Boockvar K. Scheduled and unscheduled hospital readmissions among diabetes patients. Am J Manag Care. 2010;16(10):760.
-
(2010)
Am J Manag Care
, vol.16
, Issue.10
, pp. 760
-
-
Kim, H.1
Ross, J.S.2
Melkus, G.D.3
Zhao, Z.4
Boockvar, K.5
-
11
-
-
84875804873
-
The effect of diabetes on hospital readmissions
-
PID: 23063030
-
Dungan KM. The effect of diabetes on hospital readmissions. J Diabetes Sci Technol. 2012;6(5):1045–52.
-
(2012)
J Diabetes Sci Technol
, vol.6
, Issue.5
, pp. 1045-1052
-
-
Dungan, K.M.1
-
12
-
-
84918813088
-
Predictors of 30 day hospital readmission in patients with type 2 diabetes: a retrospective, case-control, database study
-
COI: 1:CAS:528:DC%2BC2cXitFalt7jN, PID: 25369567
-
Eby E, Hardwick C, Yu M, Gelwicks S, Deschamps K, Xie J, et al. Predictors of 30 day hospital readmission in patients with type 2 diabetes: a retrospective, case-control, database study. Curr Med Res Opin. 2015;31(1):107–14.
-
(2015)
Curr Med Res Opin
, vol.31
, Issue.1
, pp. 107-114
-
-
Eby, E.1
Hardwick, C.2
Yu, M.3
Gelwicks, S.4
Deschamps, K.5
Xie, J.6
-
13
-
-
84899571892
-
Impact of HbA1c measurement on hospital readmission rates: analysis of 70,000 clinical database patient records
-
Strack B, DeShazo JP, Gennings C, Olmo JL, Ventura S, Cios KJ, Clore JN. Impact of HbA1c measurement on hospital readmission rates: analysis of 70,000 clinical database patient records. BioMed research international. 2014;2014:1–11
-
(2014)
BioMed research international
, vol.2014
, pp. 1-11
-
-
Strack, B.1
DeShazo, J.P.2
Gennings, C.3
Olmo, J.L.4
Ventura, S.5
Cios, K.J.6
Clore, J.N.7
-
14
-
-
84908331649
-
Early readmission among patients with diabetes: a qualitative assessment of contributing factors
-
PID: 25087192
-
Rubin DJ, Donnell-Jackson K, Jhingan R, Golden SH, Paranjape A. Early readmission among patients with diabetes: a qualitative assessment of contributing factors. J Diabetes Complicat. 2014;28(6):869–73.
-
(2014)
J Diabetes Complicat
, vol.28
, Issue.6
, pp. 869-873
-
-
Rubin, D.J.1
Donnell-Jackson, K.2
Jhingan, R.3
Golden, S.H.4
Paranjape, A.5
-
15
-
-
84943583638
-
Predicting readmission risk with institution-specific prediction models
-
PID: 26363683
-
Yu S, Farooq F, van Esbroeck A, Fung G, Anand V, Krishnapuram B. Predicting readmission risk with institution-specific prediction models. Artif Intell Med. 2015;65(2):89–96.
-
(2015)
Artif Intell Med
, vol.65
, Issue.2
, pp. 89-96
-
-
Yu, S.1
Farooq, F.2
van Esbroeck, A.3
Fung, G.4
Anand, V.5
Krishnapuram, B.6
-
17
-
-
47549115392
-
Development and validation of a model for predicting emergency admissions over the next year (PEONY): a UK historical cohort study
-
PID: 18625922
-
Donnan PT, Dorward DW, Mutch B, Morris AD. Development and validation of a model for predicting emergency admissions over the next year (PEONY): a UK historical cohort study. Arch Intern Med. 2008;168(13):1416–22.
-
(2008)
Arch Intern Med
, vol.168
, Issue.13
, pp. 1416-1422
-
-
Donnan, P.T.1
Dorward, D.W.2
Mutch, B.3
Morris, A.D.4
-
18
-
-
84865126986
-
Development of a predictive model to identify inpatients at risk of re-admission within 30 days of discharge (PARR-30)
-
PID: 22885591
-
Billings J, Blunt I, Steventon A, Georghiou T, Lewis G, Bardsley M. Development of a predictive model to identify inpatients at risk of re-admission within 30 days of discharge (PARR-30). BMJ open. 2012;2(4):e001667.
-
(2012)
BMJ open
, vol.2
, Issue.4
-
-
Billings, J.1
Blunt, I.2
Steventon, A.3
Georghiou, T.4
Lewis, G.5
Bardsley, M.6
-
19
-
-
84876785353
-
Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model
-
PID: 23529115
-
Donzé J, Aujesky D, Williams D, Schnipper JL. Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model. JAMA Intern Med. 2013;173(8):632–8.
-
(2013)
JAMA Intern Med
, vol.173
, Issue.8
, pp. 632-638
-
-
Donzé, J.1
Aujesky, D.2
Williams, D.3
Schnipper, J.L.4
-
20
-
-
85007601515
-
Impact of selected pre-processing techniques on prediction of risk of early readmission for diabetic patients in India
-
Duggal R, Shukla S, Chandra S, Shukla B, Khatri SK. Impact of selected pre-processing techniques on prediction of risk of early readmission for diabetic patients in India. Int. J. Diabetes Dev Countries. 2016:1-8. doi:10.1007/s13410-016-0495-4
-
(2016)
Int. J. Diabetes Dev Countries
, pp. 1-8
-
-
Duggal, R.1
Shukla, S.2
Chandra, S.3
Shukla, B.4
Khatri, S.K.5
-
21
-
-
70349131271
-
A review of missing data treatment methods
-
Peng L, Lei L. A review of missing data treatment methods. Intell Inf Manag Syst Technol. 2005;1(3):412–9.
-
(2005)
Intell Inf Manag Syst Technol
, vol.1
, Issue.3
, pp. 412-419
-
-
Peng, L.1
Lei, L.2
-
22
-
-
84901286293
-
Exploring preprocessing techniques for prediction of risk of readmission for congestive heart failure patients
-
Meadem N, Verbiest N, Zolfaghar K, Agarwal J, Chin SC, Roy SB. Exploring preprocessing techniques for prediction of risk of readmission for congestive heart failure patients. In: Data Mining and Healthcare (DMH), at International Conference on Knowledge Discovery and Data Mining (KDD). 2013.
-
(2013)
Data Mining and Healthcare (DMH), at International Conference on Knowledge Discovery and Data Mining (KDD)
-
-
Meadem, N.1
Verbiest, N.2
Zolfaghar, K.3
Agarwal, J.4
Chin, S.C.5
Roy, S.B.6
-
23
-
-
78149490620
-
Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications
-
PID: 20819853
-
Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc. 2010;17(5):507–13.
-
(2010)
J Am Med Inform Assoc
, vol.17
, Issue.5
, pp. 507-513
-
-
Savova, G.K.1
Masanz, J.J.2
Ogren, P.V.3
Zheng, J.4
Sohn, S.5
Kipper-Schuler, K.C.6
-
24
-
-
39049176537
-
SNOMED-CT: the advanced terminology and coding system for eHealth
-
PID: 17095826
-
Donnelly K. SNOMED-CT: the advanced terminology and coding system for eHealth. Stud Health Technol inform. 2006;121:279.
-
(2006)
Stud Health Technol inform
, vol.121
, pp. 279
-
-
Donnelly, K.1
-
25
-
-
0027755702
-
The Unified Medical Language System
-
COI: 1:STN:280:DyaK2c%2FhvVOkug%3D%3D, PID: 8412823
-
Lindberg DA, Humphreys BL, McCray AT. The Unified Medical Language System. Methods Inf Med. 1993;32(4):281–91.
-
(1993)
Methods Inf Med
, vol.32
, Issue.4
, pp. 281-291
-
-
Lindberg, D.A.1
Humphreys, B.L.2
McCray, A.T.3
-
26
-
-
85007430104
-
The WEKA data mining software: an update
-
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update. ACM SIGKDD explorations newsletter. 2009;11(1):10–8.
-
(2009)
ACM SIGKDD explorations newsletter
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
27
-
-
84965112724
-
-
Elsevier, Amsterdam: (pp. 72-85, 310-317)
-
Han J, Kamber M. Data mining. 2nd ed. Amsterdam: Elsevier; 2006 (pp. 72-85, 310-317).
-
(2006)
Data mining
-
-
Han, J.1
Kamber, M.2
-
28
-
-
0002221136
-
In Proc. 20th int. conf. very large data bases
-
Agrawal R, Srikant R. Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB 1994;1215:487–499
-
(1994)
VLDB
, vol.1215
, pp. 487-499
-
-
-
29
-
-
34250727580
-
The relationship between precision-recall and ROC curves. In Proceedings of the 23rd international conference on Machine learning
-
Davis J, Goadrich M. The relationship between precision-recall and ROC curves. In Proceedings of the 23rd international conference on Machine learning. ACM. 2006;233-240.
-
(2006)
ACM
, pp. 233-240
-
-
Davis, J.1
Goadrich, M.2
|