메뉴 건너뛰기




Volumn 36, Issue 4, 2016, Pages 519-528

Predictive risk modelling for early hospital readmission of patients with diabetes in India

Author keywords

Association rule mining; Cost sensitive analysis; Feature selection analysis; Machine learning; Medical data analysis; Predicting hospital readmission rates

Indexed keywords

CLASSIFICATION; CLASSIFIER; CONTROLLED STUDY; COST BENEFIT ANALYSIS; DATA ANALYSIS; DATA MINING; DEVELOPING COUNTRY; DIABETIC PATIENT; DISEASE MODEL; HEALTH CARE SYSTEM; HIGH RISK POPULATION; HOSPITAL READMISSION; HOSPITALIZATION; HUMAN; INDIA; INTERNATIONAL NORMALIZED RATIO; LENGTH OF STAY; MAJOR CLINICAL STUDY; MEDICAL RECORD; PREDICTION; RANDOM FOREST; RECALL; RISK FACTOR; WITNESS;

EID: 85007518124     PISSN: 09733930     EISSN: 19983832     Source Type: Journal    
DOI: 10.1007/s13410-016-0511-8     Document Type: Article
Times cited : (34)

References (31)
  • 1
    • 63049123697 scopus 로고    scopus 로고
    • The validity of readmission rate as a marker of the quality of hospital care, and a recommendation for its definition
    • Rumball-Smith J, Hider P. The validity of readmission rate as a marker of the quality of hospital care, and a recommendation for its definition. NZ Med J (Online). 2009;122:1289.
    • (2009) NZ Med J (Online) , vol.122 , pp. 1289
    • Rumball-Smith, J.1    Hider, P.2
  • 2
    • 63849134505 scopus 로고    scopus 로고
    • Rehospitalizations among patients in the Medicare fee-for-service program
    • COI: 1:CAS:528:DC%2BD1MXjvFGju7c%3D, PID: 19339721
    • Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the Medicare fee-for-service program. N Engl J Med. 2009;360(14):1418–28.
    • (2009) N Engl J Med , vol.360 , Issue.14 , pp. 1418-1428
    • Jencks, S.F.1    Williams, M.V.2    Coleman, E.A.3
  • 3
    • 1242284342 scopus 로고    scopus 로고
    • Readmission to hospital: a measure of quality or outcome?
    • COI: 1:STN:280:DC%2BD2c%2FlslSnug%3D%3D, PID: 14757792
    • Clarke A. Readmission to hospital: a measure of quality or outcome? Qual Saf Health Care. 2004;13(1):10–1.
    • (2004) Qual Saf Health Care , vol.13 , Issue.1 , pp. 10-11
    • Clarke, A.1
  • 5
    • 85007512899 scopus 로고    scopus 로고
    • Reducing readmission in the hospital through integrated care cycle
    • Kar, Sujoy. Reducing readmission in the hospital through integrated care cycle. In: Open forum by Harvard Business School. 2014. https://openforum.hbs.org/challenge/hbs-hms-health-acceleration-challenge/innovations/reducing-readmission-in-the-hospital-through-integrated-care-cycle. Accessed 10 Jan 2016
    • (2014) Open forum by Harvard Business School
    • Kar, S.1
  • 7
    • 85007526279 scopus 로고    scopus 로고
    • Khatri SK. Big data analytics in Indian healthcare system—opportunities and challenges. National Conference on Computing
    • Duggal R, Shukla B, Khatri SK. Big data analytics in Indian healthcare system—opportunities and challenges. National Conference on Computing, Communication and Information Processing. 2015; doi:NCCIP2015/NERIST/02/03-05-2015/CP28.
    • (2015) Communication and Information Processing
    • Duggal, R.1    Shukla, B.2
  • 8
    • 80054764509 scopus 로고    scopus 로고
    • Risk prediction models for hospital readmission: a systematic review
    • COI: 1:CAS:528:DC%2BC3MXhtlKgs73J, PID: 22009101
    • Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M, et al. Risk prediction models for hospital readmission: a systematic review. JAMA. 2011;306(15):1688–98.
    • (2011) JAMA , vol.306 , Issue.15 , pp. 1688-1698
    • Kansagara, D.1    Englander, H.2    Salanitro, A.3    Kagen, D.4    Theobald, C.5    Freeman, M.6
  • 9
    • 0041667943 scopus 로고    scopus 로고
    • Multiple hospitalizations for patients with diabetes
    • PID: 12716799
    • Jiang HJ, Stryer D, Friedman B, Andrews R. Multiple hospitalizations for patients with diabetes. Diabetes Care. 2003;26(5):1421–6.
    • (2003) Diabetes Care , vol.26 , Issue.5 , pp. 1421-1426
    • Jiang, H.J.1    Stryer, D.2    Friedman, B.3    Andrews, R.4
  • 10
    • 78649488778 scopus 로고    scopus 로고
    • Scheduled and unscheduled hospital readmissions among diabetes patients
    • PID: 20964472
    • Kim H, Ross JS, Melkus GD, Zhao Z, Boockvar K. Scheduled and unscheduled hospital readmissions among diabetes patients. Am J Manag Care. 2010;16(10):760.
    • (2010) Am J Manag Care , vol.16 , Issue.10 , pp. 760
    • Kim, H.1    Ross, J.S.2    Melkus, G.D.3    Zhao, Z.4    Boockvar, K.5
  • 11
    • 84875804873 scopus 로고    scopus 로고
    • The effect of diabetes on hospital readmissions
    • PID: 23063030
    • Dungan KM. The effect of diabetes on hospital readmissions. J Diabetes Sci Technol. 2012;6(5):1045–52.
    • (2012) J Diabetes Sci Technol , vol.6 , Issue.5 , pp. 1045-1052
    • Dungan, K.M.1
  • 12
    • 84918813088 scopus 로고    scopus 로고
    • Predictors of 30 day hospital readmission in patients with type 2 diabetes: a retrospective, case-control, database study
    • COI: 1:CAS:528:DC%2BC2cXitFalt7jN, PID: 25369567
    • Eby E, Hardwick C, Yu M, Gelwicks S, Deschamps K, Xie J, et al. Predictors of 30 day hospital readmission in patients with type 2 diabetes: a retrospective, case-control, database study. Curr Med Res Opin. 2015;31(1):107–14.
    • (2015) Curr Med Res Opin , vol.31 , Issue.1 , pp. 107-114
    • Eby, E.1    Hardwick, C.2    Yu, M.3    Gelwicks, S.4    Deschamps, K.5    Xie, J.6
  • 14
    • 84908331649 scopus 로고    scopus 로고
    • Early readmission among patients with diabetes: a qualitative assessment of contributing factors
    • PID: 25087192
    • Rubin DJ, Donnell-Jackson K, Jhingan R, Golden SH, Paranjape A. Early readmission among patients with diabetes: a qualitative assessment of contributing factors. J Diabetes Complicat. 2014;28(6):869–73.
    • (2014) J Diabetes Complicat , vol.28 , Issue.6 , pp. 869-873
    • Rubin, D.J.1    Donnell-Jackson, K.2    Jhingan, R.3    Golden, S.H.4    Paranjape, A.5
  • 17
    • 47549115392 scopus 로고    scopus 로고
    • Development and validation of a model for predicting emergency admissions over the next year (PEONY): a UK historical cohort study
    • PID: 18625922
    • Donnan PT, Dorward DW, Mutch B, Morris AD. Development and validation of a model for predicting emergency admissions over the next year (PEONY): a UK historical cohort study. Arch Intern Med. 2008;168(13):1416–22.
    • (2008) Arch Intern Med , vol.168 , Issue.13 , pp. 1416-1422
    • Donnan, P.T.1    Dorward, D.W.2    Mutch, B.3    Morris, A.D.4
  • 18
    • 84865126986 scopus 로고    scopus 로고
    • Development of a predictive model to identify inpatients at risk of re-admission within 30 days of discharge (PARR-30)
    • PID: 22885591
    • Billings J, Blunt I, Steventon A, Georghiou T, Lewis G, Bardsley M. Development of a predictive model to identify inpatients at risk of re-admission within 30 days of discharge (PARR-30). BMJ open. 2012;2(4):e001667.
    • (2012) BMJ open , vol.2 , Issue.4
    • Billings, J.1    Blunt, I.2    Steventon, A.3    Georghiou, T.4    Lewis, G.5    Bardsley, M.6
  • 19
    • 84876785353 scopus 로고    scopus 로고
    • Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model
    • PID: 23529115
    • Donzé J, Aujesky D, Williams D, Schnipper JL. Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model. JAMA Intern Med. 2013;173(8):632–8.
    • (2013) JAMA Intern Med , vol.173 , Issue.8 , pp. 632-638
    • Donzé, J.1    Aujesky, D.2    Williams, D.3    Schnipper, J.L.4
  • 20
    • 85007601515 scopus 로고    scopus 로고
    • Impact of selected pre-processing techniques on prediction of risk of early readmission for diabetic patients in India
    • Duggal R, Shukla S, Chandra S, Shukla B, Khatri SK. Impact of selected pre-processing techniques on prediction of risk of early readmission for diabetic patients in India. Int. J. Diabetes Dev Countries. 2016:1-8. doi:10.1007/s13410-016-0495-4
    • (2016) Int. J. Diabetes Dev Countries , pp. 1-8
    • Duggal, R.1    Shukla, S.2    Chandra, S.3    Shukla, B.4    Khatri, S.K.5
  • 21
    • 70349131271 scopus 로고    scopus 로고
    • A review of missing data treatment methods
    • Peng L, Lei L. A review of missing data treatment methods. Intell Inf Manag Syst Technol. 2005;1(3):412–9.
    • (2005) Intell Inf Manag Syst Technol , vol.1 , Issue.3 , pp. 412-419
    • Peng, L.1    Lei, L.2
  • 23
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications
    • PID: 20819853
    • Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc. 2010;17(5):507–13.
    • (2010) J Am Med Inform Assoc , vol.17 , Issue.5 , pp. 507-513
    • Savova, G.K.1    Masanz, J.J.2    Ogren, P.V.3    Zheng, J.4    Sohn, S.5    Kipper-Schuler, K.C.6
  • 24
    • 39049176537 scopus 로고    scopus 로고
    • SNOMED-CT: the advanced terminology and coding system for eHealth
    • PID: 17095826
    • Donnelly K. SNOMED-CT: the advanced terminology and coding system for eHealth. Stud Health Technol inform. 2006;121:279.
    • (2006) Stud Health Technol inform , vol.121 , pp. 279
    • Donnelly, K.1
  • 25
    • 0027755702 scopus 로고
    • The Unified Medical Language System
    • COI: 1:STN:280:DyaK2c%2FhvVOkug%3D%3D, PID: 8412823
    • Lindberg DA, Humphreys BL, McCray AT. The Unified Medical Language System. Methods Inf Med. 1993;32(4):281–91.
    • (1993) Methods Inf Med , vol.32 , Issue.4 , pp. 281-291
    • Lindberg, D.A.1    Humphreys, B.L.2    McCray, A.T.3
  • 27
    • 84965112724 scopus 로고    scopus 로고
    • Elsevier, Amsterdam: (pp. 72-85, 310-317)
    • Han J, Kamber M. Data mining. 2nd ed. Amsterdam: Elsevier; 2006 (pp. 72-85, 310-317).
    • (2006) Data mining
    • Han, J.1    Kamber, M.2
  • 28
    • 0002221136 scopus 로고
    • In Proc. 20th int. conf. very large data bases
    • Agrawal R, Srikant R. Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB 1994;1215:487–499
    • (1994) VLDB , vol.1215 , pp. 487-499
  • 29
    • 34250727580 scopus 로고    scopus 로고
    • The relationship between precision-recall and ROC curves. In Proceedings of the 23rd international conference on Machine learning
    • Davis J, Goadrich M. The relationship between precision-recall and ROC curves. In Proceedings of the 23rd international conference on Machine learning. ACM. 2006;233-240.
    • (2006) ACM , pp. 233-240
    • Davis, J.1    Goadrich, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.