-
3
-
-
2942564430
-
Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence
-
Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4: 1633-1649.
-
(2004)
Proteomics
, vol.4
, pp. 1633-1649
-
-
Blom, N.1
Sicheritz-Pontén, T.2
Gupta, R.3
Gammeltoft, S.4
Brunak, S.5
-
4
-
-
78149442889
-
Machine learning methods for prediction of CDK-inhibitors
-
Ramana J, Gupta D (2010) Machine learning methods for prediction of CDK-inhibitors. PLoS One 5(10): e13357.
-
(2010)
PLoS One
, vol.5
, Issue.10
-
-
Ramana, J.1
Gupta, D.2
-
5
-
-
84862647729
-
Predicting a small molecule-kinase interaction map: A machine learning approach
-
Buchwald F, Richter L, Kramer S (2011) Predicting a small molecule-kinase interaction map: a machine learning approach. J Cheminform 3: 22.
-
(2011)
J Cheminform
, vol.3
, pp. 22
-
-
Buchwald, F.1
Richter, L.2
Kramer, S.3
-
6
-
-
0033075882
-
Separate-and-conquer rule learning
-
Fürnkranz J (1999) Separate-and-conquer rule learning. Artif Intell Rev 13(1): 3-54.
-
(1999)
Artif Intell Rev
, vol.13
, Issue.1
, pp. 3-54
-
-
Fürnkranz, J.1
-
8
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
Domingos P, Pazzani M (1997) On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn 29(2-3): 103-130.
-
(1997)
Mach Learn
, vol.29
, Issue.2-3
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
9
-
-
34249753618
-
Support-vector networks
-
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3): 273-297.
-
(1995)
Mach Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
10
-
-
0022471098
-
Learning representations by backpropagating errors
-
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by backpropagating errors. Nature 323(9): 533-536.
-
(1986)
Nature
, vol.323
, Issue.9
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
11
-
-
84926662675
-
Nearest neighbor pattern classification
-
Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inform Theory 13(1): 21-27.
-
(1967)
IEEE Trans Inform Theory
, vol.13
, Issue.1
, pp. 21-27
-
-
Cover, T.M.1
Hart, P.E.2
-
12
-
-
84945709355
-
An algorithm for finding best matches in logarithmic expected time
-
Friedman JH, Bentley JL, Finkel RA (1977) An algorithm for finding best matches in logarithmic expected time. ACM Trans Math Softw 3 (3): 209-226.
-
(1977)
ACM Trans Math Softw
, vol.3
, Issue.3
, pp. 209-226
-
-
Friedman, J.H.1
Bentley, J.L.2
Finkel, R.A.3
-
13
-
-
0030211964
-
Bagging predictors
-
Breiman L (1996) Bagging predictors. Mach Learn 24(2): 123-140.
-
(1996)
Mach Learn
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
15
-
-
80053403826
-
Ensemble methods in machine learning
-
Springer, Berlin
-
Dietterich TG (2000) Ensemble methods in machine learning. Multiple classifier systems. Springer, Berlin, pp 1-15.
-
(2000)
Multiple classifier systems
, pp. 1-15
-
-
Dietterich, T.G.1
-
16
-
-
0026692226
-
Stacked generalization
-
Wolpert DH (1992) Stacked generalization. Neural Netw 5(2): 241-259.
-
(1992)
Neural Netw
, vol.5
, Issue.2
, pp. 241-259
-
-
Wolpert, D.H.1
-
17
-
-
84947759699
-
Inducing cost-sensitive trees via instance weighting
-
Springer, Berlin
-
Ting KM (1998) Inducing cost-sensitive trees via instance weighting. Principles of data mining and knowledge discovery. Springer, Berlin, pp 139-147.
-
(1998)
Principles of data mining and knowledge discovery
, pp. 139-147
-
-
Ting, K.M.1
-
19
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97 (1): 273-324.
-
(1997)
Artif Intell
, vol.97
, Issue.1
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
21
-
-
0014129195
-
Hierarchical clustering schemes
-
Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32(3): 241-254.
-
(1967)
Psychometrika
, vol.32
, Issue.3
, pp. 241-254
-
-
Johnson, S.C.1
-
24
-
-
0030305457
-
R: A language for data analysis and graphics
-
Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5(3): 299-314.
-
(1996)
J Comput Graph Stat
, vol.5
, Issue.3
, pp. 299-314
-
-
Ihaka, R.1
Gentleman, R.2
-
25
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12: 2825-2830.
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
|