메뉴 건너뛰기




Volumn 1418, Issue , 2016, Pages 353-378

Introducing machine learning concepts with WEKA

(2)  Smith, Tony C a   Frank, Eibe a  

a NONE

Author keywords

Bioinformatics; Data mining; Machine learning; Tutorial; WEKA

Indexed keywords

SIGNAL PEPTIDE;

EID: 84961671416     PISSN: 10643745     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-1-4939-3578-9_17     Document Type: Chapter
Times cited : (144)

References (25)
  • 3
    • 2942564430 scopus 로고    scopus 로고
    • Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence
    • Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4: 1633-1649.
    • (2004) Proteomics , vol.4 , pp. 1633-1649
    • Blom, N.1    Sicheritz-Pontén, T.2    Gupta, R.3    Gammeltoft, S.4    Brunak, S.5
  • 4
    • 78149442889 scopus 로고    scopus 로고
    • Machine learning methods for prediction of CDK-inhibitors
    • Ramana J, Gupta D (2010) Machine learning methods for prediction of CDK-inhibitors. PLoS One 5(10): e13357.
    • (2010) PLoS One , vol.5 , Issue.10
    • Ramana, J.1    Gupta, D.2
  • 5
    • 84862647729 scopus 로고    scopus 로고
    • Predicting a small molecule-kinase interaction map: A machine learning approach
    • Buchwald F, Richter L, Kramer S (2011) Predicting a small molecule-kinase interaction map: a machine learning approach. J Cheminform 3: 22.
    • (2011) J Cheminform , vol.3 , pp. 22
    • Buchwald, F.1    Richter, L.2    Kramer, S.3
  • 6
    • 0033075882 scopus 로고    scopus 로고
    • Separate-and-conquer rule learning
    • Fürnkranz J (1999) Separate-and-conquer rule learning. Artif Intell Rev 13(1): 3-54.
    • (1999) Artif Intell Rev , vol.13 , Issue.1 , pp. 3-54
    • Fürnkranz, J.1
  • 7
  • 8
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P, Pazzani M (1997) On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn 29(2-3): 103-130.
    • (1997) Mach Learn , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 9
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3): 273-297.
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by backpropagating errors. Nature 323(9): 533-536.
    • (1986) Nature , vol.323 , Issue.9 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 11
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inform Theory 13(1): 21-27.
    • (1967) IEEE Trans Inform Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 12
    • 84945709355 scopus 로고
    • An algorithm for finding best matches in logarithmic expected time
    • Friedman JH, Bentley JL, Finkel RA (1977) An algorithm for finding best matches in logarithmic expected time. ACM Trans Math Softw 3 (3): 209-226.
    • (1977) ACM Trans Math Softw , vol.3 , Issue.3 , pp. 209-226
    • Friedman, J.H.1    Bentley, J.L.2    Finkel, R.A.3
  • 13
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24(2): 123-140.
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 15
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Springer, Berlin
    • Dietterich TG (2000) Ensemble methods in machine learning. Multiple classifier systems. Springer, Berlin, pp 1-15.
    • (2000) Multiple classifier systems , pp. 1-15
    • Dietterich, T.G.1
  • 16
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert DH (1992) Stacked generalization. Neural Netw 5(2): 241-259.
    • (1992) Neural Netw , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 17
    • 84947759699 scopus 로고    scopus 로고
    • Inducing cost-sensitive trees via instance weighting
    • Springer, Berlin
    • Ting KM (1998) Inducing cost-sensitive trees via instance weighting. Principles of data mining and knowledge discovery. Springer, Berlin, pp 139-147.
    • (1998) Principles of data mining and knowledge discovery , pp. 139-147
    • Ting, K.M.1
  • 19
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97 (1): 273-324.
    • (1997) Artif Intell , vol.97 , Issue.1 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 21
    • 0014129195 scopus 로고
    • Hierarchical clustering schemes
    • Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32(3): 241-254.
    • (1967) Psychometrika , vol.32 , Issue.3 , pp. 241-254
    • Johnson, S.C.1
  • 24
    • 0030305457 scopus 로고    scopus 로고
    • R: A language for data analysis and graphics
    • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5(3): 299-314.
    • (1996) J Comput Graph Stat , vol.5 , Issue.3 , pp. 299-314
    • Ihaka, R.1    Gentleman, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.