-
1
-
-
84897459902
-
A review of combined approaches for prediction of short-term wind speed and power
-
Tascikaraoglu A., Uzunoglu M. A review of combined approaches for prediction of short-term wind speed and power. Renew. Sustain. Energy Rev. 2014, 34:243-254.
-
(2014)
Renew. Sustain. Energy Rev.
, vol.34
, pp. 243-254
-
-
Tascikaraoglu, A.1
Uzunoglu, M.2
-
2
-
-
84860890595
-
Data mining and wind power prediction: a literature review
-
Colak I., Sagiroglu S., Yesilbudak M. Data mining and wind power prediction: a literature review. Renew. Energy 2012, 46:241-247.
-
(2012)
Renew. Energy
, vol.46
, pp. 241-247
-
-
Colak, I.1
Sagiroglu, S.2
Yesilbudak, M.3
-
3
-
-
0033086885
-
Short-term prediction of the power production from wind farms
-
Landberg L. Short-term prediction of the power production from wind farms. J. Wind Eng. Ind. Aerodyn. 1999, 80:207-220.
-
(1999)
J. Wind Eng. Ind. Aerodyn.
, vol.80
, pp. 207-220
-
-
Landberg, L.1
-
4
-
-
0036555398
-
Using medium-range weather forecasts to improve the value of wind energy production
-
Roulston M.S., Kaplan D.T., Hardenberg J., Smith L.A. Using medium-range weather forecasts to improve the value of wind energy production. Renew. Energy 2003, 28:585-602.
-
(2003)
Renew. Energy
, vol.28
, pp. 585-602
-
-
Roulston, M.S.1
Kaplan, D.T.2
Hardenberg, J.3
Smith, L.A.4
-
5
-
-
75049083283
-
Wind forecasts for wind power generation using the Eta model
-
Lazic L., Pejanovic G., Zivkovic M. Wind forecasts for wind power generation using the Eta model. Renew. Energy 2010, 35:1236-1243.
-
(2010)
Renew. Energy
, vol.35
, pp. 1236-1243
-
-
Lazic, L.1
Pejanovic, G.2
Zivkovic, M.3
-
6
-
-
43049128559
-
A review of the young history of wind power short-term prediction
-
Costa A., Crespo A., Navarro J., Lizcano G., Madsen H., Feitosa E. A review of the young history of wind power short-term prediction. Renew. Sustain. Energy Rev. 2008, 12:1725-1744.
-
(2008)
Renew. Sustain. Energy Rev.
, vol.12
, pp. 1725-1744
-
-
Costa, A.1
Crespo, A.2
Navarro, J.3
Lizcano, G.4
Madsen, H.5
Feitosa, E.6
-
7
-
-
20444437286
-
Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
-
Torres J.L., Garcia A., De Blas M., De Francisco A. Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Sol. Energy 2005, 79:65-77.
-
(2005)
Sol. Energy
, vol.79
, pp. 65-77
-
-
Torres, J.L.1
Garcia, A.2
De Blas, M.3
De Francisco, A.4
-
8
-
-
58949103845
-
Day-ahead wind speed forecasting using f-ARIMA models
-
Kavassery R., Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renew. Energy 2009, 34:1388-1393.
-
(2009)
Renew. Energy
, vol.34
, pp. 1388-1393
-
-
Kavassery, R.1
Seetharaman, K.2
-
9
-
-
51349159105
-
A protocol for standardizing the performance evaluation of short-term wind power prediction models
-
Chicago, US
-
H. Madsen, G. Kariniotakis, H.A. Nielsen, T.S. Nielsen, P. Pinson, A protocol for standardizing the performance evaluation of short-term wind power prediction models. in: Proceedings of the global wind power conference and exhibition, Chicago, US, 2004, pp. 28-31.
-
(2004)
Proceedings of the global wind power conference and exhibition
, pp. 28-31
-
-
Madsen, H.1
Kariniotakis, G.2
Nielsen, H.A.3
Nielsen, T.S.4
Pinson, P.5
-
10
-
-
33645031359
-
Standardizing the performance evaluation of short-term wind power prediction models
-
Madsen H., Pinson P., Kariniotakis G., Nielsen H.A., Nielsen T.S. Standardizing the performance evaluation of short-term wind power prediction models. Wind Energy 2005, 29:475-489.
-
(2005)
Wind Energy
, vol.29
, pp. 475-489
-
-
Madsen, H.1
Pinson, P.2
Kariniotakis, G.3
Nielsen, H.A.4
Nielsen, T.S.5
-
11
-
-
84955563632
-
Time series wind power forecasting based on variant Gaussian process and TLBO
-
in press
-
Yan J., Li K., Bai E., Yang Z., Foley A. Time series wind power forecasting based on variant Gaussian process and TLBO. Neurocomputing 2016, in press.
-
(2016)
Neurocomputing
-
-
Yan, J.1
Li, K.2
Bai, E.3
Yang, Z.4
Foley, A.5
-
12
-
-
78649450621
-
Short-term wind power forecasting in Portugal by neural networks and wavelet transform
-
Catalao J.P.S., Pousinho H.M.I., Mendes V.M.F. Short-term wind power forecasting in Portugal by neural networks and wavelet transform. Renew. Energy 2011, 36:1245-1251.
-
(2011)
Renew. Energy
, vol.36
, pp. 1245-1251
-
-
Catalao, J.P.S.1
Pousinho, H.M.I.2
Mendes, V.M.F.3
-
13
-
-
84859036543
-
AWNN-assisted wind power forecasting using feed-forward neural network
-
Bhaskar K., Singh S.N. AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans. Sustain. Energy 2012, 3:306-315.
-
(2012)
IEEE Trans. Sustain. Energy
, vol.3
, pp. 306-315
-
-
Bhaskar, K.1
Singh, S.N.2
-
14
-
-
84927737833
-
Wind power forecasting based on principle component phase space reconstruction
-
Han L., Romero C.E., Yao Z. Wind power forecasting based on principle component phase space reconstruction. Renew. Energy 2015, 81:737-744.
-
(2015)
Renew. Energy
, vol.81
, pp. 737-744
-
-
Han, L.1
Romero, C.E.2
Yao, Z.3
-
15
-
-
84896516718
-
Wind prediction using weather research forecasting model (wrf): a case study in Peru
-
Gonzalez-Mingueza C., Munoz-Gutierrez F. Wind prediction using weather research forecasting model (wrf): a case study in Peru. Energy Convers. Manag. 2014, 81:363-373.
-
(2014)
Energy Convers. Manag.
, vol.81
, pp. 363-373
-
-
Gonzalez-Mingueza, C.1
Munoz-Gutierrez, F.2
-
16
-
-
67349211771
-
Forecasting the wind generation using a two-stage network based on meteorological information
-
Fan S., Liao J., Yokoyama R., Chen L., Lee W.J. Forecasting the wind generation using a two-stage network based on meteorological information. IEEE Trans. Energy Convers. 2009, 24:474-482.
-
(2009)
IEEE Trans. Energy Convers.
, vol.24
, pp. 474-482
-
-
Fan, S.1
Liao, J.2
Yokoyama, R.3
Chen, L.4
Lee, W.J.5
-
17
-
-
58149474856
-
Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks
-
Salcedo-Sanz S., Perez-Bellido A.M., Ortiz-Garcia E.G., Portilla-Figueras A., Prieto L., Correoso F. Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks. Neurocomputing 2009, 72:1336-1341.
-
(2009)
Neurocomputing
, vol.72
, pp. 1336-1341
-
-
Salcedo-Sanz, S.1
Perez-Bellido, A.M.2
Ortiz-Garcia, E.G.3
Portilla-Figueras, A.4
Prieto, L.5
Correoso, F.6
-
18
-
-
84863508830
-
A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
-
Liu H., Chen C., Tian H., Li Y. A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew. Energy 2012, 48:545-556.
-
(2012)
Renew. Energy
, vol.48
, pp. 545-556
-
-
Liu, H.1
Chen, C.2
Tian, H.3
Li, Y.4
-
19
-
-
84930947539
-
New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks
-
Liu H., Tian H., Liang X., Li Y. New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks. Renew. Energy 2015, 83:1066-1075.
-
(2015)
Renew. Energy
, vol.83
, pp. 1066-1075
-
-
Liu, H.1
Tian, H.2
Liang, X.3
Li, Y.4
-
20
-
-
77953137822
-
On comparing three artificial neural networks for wind speed forecasting
-
Li G., Shi J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87:2313-2320.
-
(2010)
Appl. Energy
, vol.87
, pp. 2313-2320
-
-
Li, G.1
Shi, J.2
-
21
-
-
84939789758
-
Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
-
Liu H., Tian H., Liang X., Li Y. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Appl. Energy 2015, 157:183-194.
-
(2015)
Appl. Energy
, vol.157
, pp. 183-194
-
-
Liu, H.1
Tian, H.2
Liang, X.3
Li, Y.4
-
22
-
-
84904741064
-
Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization - extreme learning machine approach
-
Salcedo-Sanz S., Pastor-Sanchez A., Blanco-Aguilera A., Prieto L., Garcia-Herrera R. Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization - extreme learning machine approach. Energy Convers. Manag. 2014, 87:10-18.
-
(2014)
Energy Convers. Manag.
, vol.87
, pp. 10-18
-
-
Salcedo-Sanz, S.1
Pastor-Sanchez, A.2
Blanco-Aguilera, A.3
Prieto, L.4
Garcia-Herrera, R.5
-
23
-
-
79960324052
-
Short-term wind-power prediction based on wavelet transform - support vector machine and statistic-characteristics analysis
-
1-5 May 2011, Baltimore, USA.
-
Y. Liu, J. Shi, Y. Yang, W.J. Lee, Short-term wind-power prediction based on wavelet transform - support vector machine and statistic-characteristics analysis, in: Proceedings of the IEEE Industrial and Commercial Power Systems Technical Conference (I&CPS), 1-5 May 2011, Baltimore, USA.
-
Proceedings of the IEEE Industrial and Commercial Power Systems Technical Conference (I&CPS)
-
-
Liu, Y.1
Shi, J.2
Yang, Y.3
Lee, W.J.4
-
24
-
-
84875470488
-
A prediction model for wind farm power generation based on fuzzy modelling
-
Zhu B., Chen M.Y., Wade N., Ran L. A prediction model for wind farm power generation based on fuzzy modelling. Procedia. Environ. Sci. 2012, 12:122-129.
-
(2012)
Procedia. Environ. Sci.
, vol.12
, pp. 122-129
-
-
Zhu, B.1
Chen, M.Y.2
Wade, N.3
Ran, L.4
-
25
-
-
84908376968
-
Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
-
Osorio G.J., Matias J.C.O., Catalao J.P.S. Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 2015, 75:301-307.
-
(2015)
Renew. Energy
, vol.75
, pp. 301-307
-
-
Osorio, G.J.1
Matias, J.C.O.2
Catalao, J.P.S.3
-
26
-
-
58149474856
-
Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks
-
Salcedo-Sanz S., Perez-Bellido A.M., Ortiz-Garcia E.G., Portilla-Figueras A., Prieto L., Correoso F. Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks. Neurocomputing 2009, 72:1336-1341.
-
(2009)
Neurocomputing
, vol.72
, pp. 1336-1341
-
-
Salcedo-Sanz, S.1
Perez-Bellido, A.M.2
Ortiz-Garcia, E.G.3
Portilla-Figueras, A.4
Prieto, L.5
Correoso, F.6
-
27
-
-
58149468814
-
Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs)
-
Khashei M., Bijari M., Raissi-Ardali G. Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs). Neurocomputing 2009, 72:956-967.
-
(2009)
Neurocomputing
, vol.72
, pp. 956-967
-
-
Khashei, M.1
Bijari, M.2
Raissi-Ardali, G.3
-
28
-
-
84892441792
-
Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting
-
Ren C., An N., Wang J., Li L., Hu B., Shang D. Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting. Knowledge-Based Syst. 2014, 56:226-239.
-
(2014)
Knowledge-Based Syst.
, vol.56
, pp. 226-239
-
-
Ren, C.1
An, N.2
Wang, J.3
Li, L.4
Hu, B.5
Shang, D.6
-
29
-
-
84870024579
-
A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm
-
Li H.-Z., Guo S., Li C.-J., Sun J.-Q. A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm. Knowledge-Based Syst. 2013, 37:378-387.
-
(2013)
Knowledge-Based Syst.
, vol.37
, pp. 378-387
-
-
Li, H.-Z.1
Guo, S.2
Li, C.-J.3
Sun, J.-Q.4
-
30
-
-
84938206905
-
Wind speed prediction using reduced support vector machines with feature selection
-
Kong X., Liu X., Shi R., Lee K.Y. Wind speed prediction using reduced support vector machines with feature selection. Neurocomputing 2015, 169:449-456.
-
(2015)
Neurocomputing
, vol.169
, pp. 449-456
-
-
Kong, X.1
Liu, X.2
Shi, R.3
Lee, K.Y.4
-
31
-
-
79955623964
-
Wind farm power prediction based on wavelet decomposition and chaotic time series
-
An X., Jiang D., Liu C., Zhao M. Wind farm power prediction based on wavelet decomposition and chaotic time series. Expert Syst. Appl. 2011, 38:11280-11285.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 11280-11285
-
-
An, X.1
Jiang, D.2
Liu, C.3
Zhao, M.4
-
33
-
-
78649635820
-
Practical feature selection from correlation to causality, Mining Massive Data Sets for Security
-
IOS Press, Amsterdam
-
I. Guyon, Practical feature selection from correlation to causality, Mining Massive Data Sets for Security, IOS Press, Amsterdam, 2008, pp. 27-44.
-
(2008)
, pp. 27-44
-
-
Guyon, I.1
-
34
-
-
2942701493
-
Ranking a random feature for variable and feature selection
-
Stoppiglia H., Dreyfus G., Dubois R., Oussar Y. Ranking a random feature for variable and feature selection. J. Mach. Learn. Res. 2003, 3:1399-1414.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1399-1414
-
-
Stoppiglia, H.1
Dreyfus, G.2
Dubois, R.3
Oussar, Y.4
-
35
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
36
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Huang G.-B., Chen L., Siew C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17:879-892.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, pp. 879-892
-
-
Huang, G.-B.1
Chen, L.2
Siew, C.-K.3
-
37
-
-
34548158996
-
Convex incremental extreme learning machine
-
Huang G.-B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70:3056-3062.
-
(2007)
Neurocomputing
, vol.70
, pp. 3056-3062
-
-
Huang, G.-B.1
Chen, L.2
-
38
-
-
84919786704
-
Hidden node optimization for extreme learning machine
-
Y.-W. Huang, D.-H. Lai, Hidden node optimization for extreme learning machine, in: Proceedings of the AASRI Procedia Conference on Modelling Identification and Control, 3, 2012, pp. 375-380.
-
(2012)
Proceedings of the AASRI Procedia Conference on Modelling Identification and Control
, vol.3
, pp. 375-380
-
-
Huang, Y.-W.1
Lai, D.-H.2
-
39
-
-
84971374226
-
-
http://sotaventogalicia.com/en/real-time-data/historical.
-
-
-
-
40
-
-
84971457779
-
-
[Online]
-
National Renewable Energy Laboratory [Online], Available at http://wind.nrel.gov/Web_nrel/.
-
-
-
|