메뉴 건너뛰기




Volumn 203, Issue , 2016, Pages 111-120

A new intelligent method based on combination of VMD and ELM for short term wind power forecasting

Author keywords

Extreme Learning Machine (ELM); Pattern recognition; Variational Mode Decomposition (VMD); Wind power

Indexed keywords

ELECTRIC POWER SYSTEM INTERCONNECTION; ELECTRIC UTILITIES; ENERGY RESOURCES; FEATURE EXTRACTION; FORECASTING; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; PATTERN RECOGNITION; TIME SERIES; WIND; WIND EFFECTS; WIND POWER;

EID: 84971472399     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2016.03.054     Document Type: Article
Times cited : (229)

References (40)
  • 1
    • 84897459902 scopus 로고    scopus 로고
    • A review of combined approaches for prediction of short-term wind speed and power
    • Tascikaraoglu A., Uzunoglu M. A review of combined approaches for prediction of short-term wind speed and power. Renew. Sustain. Energy Rev. 2014, 34:243-254.
    • (2014) Renew. Sustain. Energy Rev. , vol.34 , pp. 243-254
    • Tascikaraoglu, A.1    Uzunoglu, M.2
  • 2
    • 84860890595 scopus 로고    scopus 로고
    • Data mining and wind power prediction: a literature review
    • Colak I., Sagiroglu S., Yesilbudak M. Data mining and wind power prediction: a literature review. Renew. Energy 2012, 46:241-247.
    • (2012) Renew. Energy , vol.46 , pp. 241-247
    • Colak, I.1    Sagiroglu, S.2    Yesilbudak, M.3
  • 3
    • 0033086885 scopus 로고    scopus 로고
    • Short-term prediction of the power production from wind farms
    • Landberg L. Short-term prediction of the power production from wind farms. J. Wind Eng. Ind. Aerodyn. 1999, 80:207-220.
    • (1999) J. Wind Eng. Ind. Aerodyn. , vol.80 , pp. 207-220
    • Landberg, L.1
  • 4
    • 0036555398 scopus 로고    scopus 로고
    • Using medium-range weather forecasts to improve the value of wind energy production
    • Roulston M.S., Kaplan D.T., Hardenberg J., Smith L.A. Using medium-range weather forecasts to improve the value of wind energy production. Renew. Energy 2003, 28:585-602.
    • (2003) Renew. Energy , vol.28 , pp. 585-602
    • Roulston, M.S.1    Kaplan, D.T.2    Hardenberg, J.3    Smith, L.A.4
  • 5
    • 75049083283 scopus 로고    scopus 로고
    • Wind forecasts for wind power generation using the Eta model
    • Lazic L., Pejanovic G., Zivkovic M. Wind forecasts for wind power generation using the Eta model. Renew. Energy 2010, 35:1236-1243.
    • (2010) Renew. Energy , vol.35 , pp. 1236-1243
    • Lazic, L.1    Pejanovic, G.2    Zivkovic, M.3
  • 7
    • 20444437286 scopus 로고    scopus 로고
    • Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
    • Torres J.L., Garcia A., De Blas M., De Francisco A. Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Sol. Energy 2005, 79:65-77.
    • (2005) Sol. Energy , vol.79 , pp. 65-77
    • Torres, J.L.1    Garcia, A.2    De Blas, M.3    De Francisco, A.4
  • 8
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models
    • Kavassery R., Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renew. Energy 2009, 34:1388-1393.
    • (2009) Renew. Energy , vol.34 , pp. 1388-1393
    • Kavassery, R.1    Seetharaman, K.2
  • 10
    • 33645031359 scopus 로고    scopus 로고
    • Standardizing the performance evaluation of short-term wind power prediction models
    • Madsen H., Pinson P., Kariniotakis G., Nielsen H.A., Nielsen T.S. Standardizing the performance evaluation of short-term wind power prediction models. Wind Energy 2005, 29:475-489.
    • (2005) Wind Energy , vol.29 , pp. 475-489
    • Madsen, H.1    Pinson, P.2    Kariniotakis, G.3    Nielsen, H.A.4    Nielsen, T.S.5
  • 11
    • 84955563632 scopus 로고    scopus 로고
    • Time series wind power forecasting based on variant Gaussian process and TLBO
    • in press
    • Yan J., Li K., Bai E., Yang Z., Foley A. Time series wind power forecasting based on variant Gaussian process and TLBO. Neurocomputing 2016, in press.
    • (2016) Neurocomputing
    • Yan, J.1    Li, K.2    Bai, E.3    Yang, Z.4    Foley, A.5
  • 12
    • 78649450621 scopus 로고    scopus 로고
    • Short-term wind power forecasting in Portugal by neural networks and wavelet transform
    • Catalao J.P.S., Pousinho H.M.I., Mendes V.M.F. Short-term wind power forecasting in Portugal by neural networks and wavelet transform. Renew. Energy 2011, 36:1245-1251.
    • (2011) Renew. Energy , vol.36 , pp. 1245-1251
    • Catalao, J.P.S.1    Pousinho, H.M.I.2    Mendes, V.M.F.3
  • 13
    • 84859036543 scopus 로고    scopus 로고
    • AWNN-assisted wind power forecasting using feed-forward neural network
    • Bhaskar K., Singh S.N. AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans. Sustain. Energy 2012, 3:306-315.
    • (2012) IEEE Trans. Sustain. Energy , vol.3 , pp. 306-315
    • Bhaskar, K.1    Singh, S.N.2
  • 14
    • 84927737833 scopus 로고    scopus 로고
    • Wind power forecasting based on principle component phase space reconstruction
    • Han L., Romero C.E., Yao Z. Wind power forecasting based on principle component phase space reconstruction. Renew. Energy 2015, 81:737-744.
    • (2015) Renew. Energy , vol.81 , pp. 737-744
    • Han, L.1    Romero, C.E.2    Yao, Z.3
  • 15
    • 84896516718 scopus 로고    scopus 로고
    • Wind prediction using weather research forecasting model (wrf): a case study in Peru
    • Gonzalez-Mingueza C., Munoz-Gutierrez F. Wind prediction using weather research forecasting model (wrf): a case study in Peru. Energy Convers. Manag. 2014, 81:363-373.
    • (2014) Energy Convers. Manag. , vol.81 , pp. 363-373
    • Gonzalez-Mingueza, C.1    Munoz-Gutierrez, F.2
  • 16
    • 67349211771 scopus 로고    scopus 로고
    • Forecasting the wind generation using a two-stage network based on meteorological information
    • Fan S., Liao J., Yokoyama R., Chen L., Lee W.J. Forecasting the wind generation using a two-stage network based on meteorological information. IEEE Trans. Energy Convers. 2009, 24:474-482.
    • (2009) IEEE Trans. Energy Convers. , vol.24 , pp. 474-482
    • Fan, S.1    Liao, J.2    Yokoyama, R.3    Chen, L.4    Lee, W.J.5
  • 18
    • 84863508830 scopus 로고    scopus 로고
    • A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
    • Liu H., Chen C., Tian H., Li Y. A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew. Energy 2012, 48:545-556.
    • (2012) Renew. Energy , vol.48 , pp. 545-556
    • Liu, H.1    Chen, C.2    Tian, H.3    Li, Y.4
  • 19
    • 84930947539 scopus 로고    scopus 로고
    • New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks
    • Liu H., Tian H., Liang X., Li Y. New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks. Renew. Energy 2015, 83:1066-1075.
    • (2015) Renew. Energy , vol.83 , pp. 1066-1075
    • Liu, H.1    Tian, H.2    Liang, X.3    Li, Y.4
  • 20
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Li G., Shi J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87:2313-2320.
    • (2010) Appl. Energy , vol.87 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 21
    • 84939789758 scopus 로고    scopus 로고
    • Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
    • Liu H., Tian H., Liang X., Li Y. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Appl. Energy 2015, 157:183-194.
    • (2015) Appl. Energy , vol.157 , pp. 183-194
    • Liu, H.1    Tian, H.2    Liang, X.3    Li, Y.4
  • 22
    • 84904741064 scopus 로고    scopus 로고
    • Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization - extreme learning machine approach
    • Salcedo-Sanz S., Pastor-Sanchez A., Blanco-Aguilera A., Prieto L., Garcia-Herrera R. Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization - extreme learning machine approach. Energy Convers. Manag. 2014, 87:10-18.
    • (2014) Energy Convers. Manag. , vol.87 , pp. 10-18
    • Salcedo-Sanz, S.1    Pastor-Sanchez, A.2    Blanco-Aguilera, A.3    Prieto, L.4    Garcia-Herrera, R.5
  • 24
    • 84875470488 scopus 로고    scopus 로고
    • A prediction model for wind farm power generation based on fuzzy modelling
    • Zhu B., Chen M.Y., Wade N., Ran L. A prediction model for wind farm power generation based on fuzzy modelling. Procedia. Environ. Sci. 2012, 12:122-129.
    • (2012) Procedia. Environ. Sci. , vol.12 , pp. 122-129
    • Zhu, B.1    Chen, M.Y.2    Wade, N.3    Ran, L.4
  • 25
    • 84908376968 scopus 로고    scopus 로고
    • Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
    • Osorio G.J., Matias J.C.O., Catalao J.P.S. Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 2015, 75:301-307.
    • (2015) Renew. Energy , vol.75 , pp. 301-307
    • Osorio, G.J.1    Matias, J.C.O.2    Catalao, J.P.S.3
  • 27
    • 58149468814 scopus 로고    scopus 로고
    • Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs)
    • Khashei M., Bijari M., Raissi-Ardali G. Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs). Neurocomputing 2009, 72:956-967.
    • (2009) Neurocomputing , vol.72 , pp. 956-967
    • Khashei, M.1    Bijari, M.2    Raissi-Ardali, G.3
  • 28
    • 84892441792 scopus 로고    scopus 로고
    • Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting
    • Ren C., An N., Wang J., Li L., Hu B., Shang D. Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting. Knowledge-Based Syst. 2014, 56:226-239.
    • (2014) Knowledge-Based Syst. , vol.56 , pp. 226-239
    • Ren, C.1    An, N.2    Wang, J.3    Li, L.4    Hu, B.5    Shang, D.6
  • 29
    • 84870024579 scopus 로고    scopus 로고
    • A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm
    • Li H.-Z., Guo S., Li C.-J., Sun J.-Q. A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm. Knowledge-Based Syst. 2013, 37:378-387.
    • (2013) Knowledge-Based Syst. , vol.37 , pp. 378-387
    • Li, H.-Z.1    Guo, S.2    Li, C.-J.3    Sun, J.-Q.4
  • 30
    • 84938206905 scopus 로고    scopus 로고
    • Wind speed prediction using reduced support vector machines with feature selection
    • Kong X., Liu X., Shi R., Lee K.Y. Wind speed prediction using reduced support vector machines with feature selection. Neurocomputing 2015, 169:449-456.
    • (2015) Neurocomputing , vol.169 , pp. 449-456
    • Kong, X.1    Liu, X.2    Shi, R.3    Lee, K.Y.4
  • 31
    • 79955623964 scopus 로고    scopus 로고
    • Wind farm power prediction based on wavelet decomposition and chaotic time series
    • An X., Jiang D., Liu C., Zhao M. Wind farm power prediction based on wavelet decomposition and chaotic time series. Expert Syst. Appl. 2011, 38:11280-11285.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 11280-11285
    • An, X.1    Jiang, D.2    Liu, C.3    Zhao, M.4
  • 33
    • 78649635820 scopus 로고    scopus 로고
    • Practical feature selection from correlation to causality, Mining Massive Data Sets for Security
    • IOS Press, Amsterdam
    • I. Guyon, Practical feature selection from correlation to causality, Mining Massive Data Sets for Security, IOS Press, Amsterdam, 2008, pp. 27-44.
    • (2008) , pp. 27-44
    • Guyon, I.1
  • 35
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 36
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.-B., Chen L., Siew C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17:879-892.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 37
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G.-B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70:3056-3062.
    • (2007) Neurocomputing , vol.70 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 39
    • 84971374226 scopus 로고    scopus 로고
    • http://sotaventogalicia.com/en/real-time-data/historical.
  • 40
    • 84971457779 scopus 로고    scopus 로고
    • [Online]
    • National Renewable Energy Laboratory [Online], Available at http://wind.nrel.gov/Web_nrel/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.