메뉴 건너뛰기




Volumn 16, Issue 4, 2017, Pages 1401-1409

Deep-Learning-Based Drug-Target Interaction Prediction

Author keywords

deep learning; deep delief network; drug target interaction prediction; feature extraction; semisupervised learning

Indexed keywords

NEW DRUG; PROTEIN;

EID: 85017108822     PISSN: 15353893     EISSN: 15353907     Source Type: Journal    
DOI: 10.1021/acs.jproteome.6b00618     Document Type: Article
Times cited : (449)

References (36)
  • 1
    • 84957037250 scopus 로고    scopus 로고
    • A multiple kernel learning algorithm for drug-target interaction prediction
    • Nascimento, A. C.; Prudêncio, R. B.; Costa, I. G. A multiple kernel learning algorithm for drug-target interaction prediction BMC Bioinf. 2016, 17, 1 10.1186/s12859-016-0890-3
    • (2016) BMC Bioinf. , vol.17 , pp. 1
    • Nascimento, A.C.1    Prudêncio, R.B.2    Costa, I.G.3
  • 2
    • 84991328213 scopus 로고    scopus 로고
    • Drug-target interaction prediction: Databases, web servers and computational models
    • Chen, X.; Yan, C. C.; Zhang, X.; Zhang, X.; Dai, F.; Yin, J.; Zhang, Y. Drug-target interaction prediction: databases, web servers and computational models Briefings Bioinf. 2016, 17 (4) 696-712 10.1093/bib/bbv066
    • (2016) Briefings Bioinf. , vol.17 , Issue.4 , pp. 696-712
    • Chen, X.1    Yan, C.C.2    Zhang, X.3    Zhang, X.4    Dai, F.5    Yin, J.6    Zhang, Y.7
  • 3
    • 84876888105 scopus 로고    scopus 로고
    • Challenges and opportunities of drug repositioning
    • Novac, N. Challenges and opportunities of drug repositioning Trends Pharmacol. Sci. 2013, 34 (5) 267-272 10.1016/j.tips.2013.03.004
    • (2013) Trends Pharmacol. Sci. , vol.34 , Issue.5 , pp. 267-272
    • Novac, N.1
  • 4
    • 77954230951 scopus 로고    scopus 로고
    • Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
    • Yamanishi, Y.; Kotera, M.; Kanehisa, M.; Goto, S. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework Bioinformatics 2010, 26 (12) i246-i254 10.1093/bioinformatics/btq176
    • (2010) Bioinformatics , vol.26 , Issue.12 , pp. i246-i254
    • Yamanishi, Y.1    Kotera, M.2    Kanehisa, M.3    Goto, S.4
  • 6
    • 79953716848 scopus 로고    scopus 로고
    • MIND-BEST: Web Server for Drugs and Target Discovery; Design, Synthesis, and Assay of MAO-B Inhibitors and Theoretical- Experimental Study of G3PDH Protein from Trichomonas gallinae
    • González-Díaz, H.; Prado-Prado, F.; García-Mera, X.; Alonso, N.; Abeijón, P.; Caamano, O.; Yáñez, M.; Munteanu, C. R.; Pazos, A.; Dea-Ayuela, M. A. et al. MIND-BEST: Web Server for Drugs and Target Discovery; Design, Synthesis, and Assay of MAO-B Inhibitors and Theoretical- Experimental Study of G3PDH Protein from Trichomonas gallinae J. Proteome Res. 2011, 10 (4) 1698-1718 10.1021/pr101009e
    • (2011) J. Proteome Res. , vol.10 , Issue.4 , pp. 1698-1718
    • González-Díaz, H.1    Prado-Prado, F.2    García-Mera, X.3    Alonso, N.4    Abeijón, P.5    Caamano, O.6    Yáñez, M.7    Munteanu, C.R.8    Pazos, A.9    Dea-Ayuela, M.A.10
  • 7
    • 67249095008 scopus 로고    scopus 로고
    • Alignment-Free Prediction of a Drug- Target Complex Network Based on Parameters of Drug Connectivity and Protein Sequence of Receptors
    • Vina, D.; Uriarte, E.; Orallo, F.; González-Díaz, H. Alignment-Free Prediction of a Drug- Target Complex Network Based on Parameters of Drug Connectivity and Protein Sequence of Receptors Mol. Pharmaceutics 2009, 6 (3) 825-835 10.1021/mp800102c
    • (2009) Mol. Pharmaceutics , vol.6 , Issue.3 , pp. 825-835
    • Vina, D.1    Uriarte, E.2    Orallo, F.3    González-Díaz, H.4
  • 8
    • 84907863082 scopus 로고    scopus 로고
    • Prediction of multi-target networks of neuroprotective compounds with entropy indices and synthesis, assay, and theoretical study of new asymmetric 1, 2-rasagiline carbamates
    • Durán, F. J. R.; Alonso, N.; Caamaño, O.; García-Mera, X.; Yañez, M.; Prado-Prado, F. J.; González-Díaz, H. Prediction of multi-target networks of neuroprotective compounds with entropy indices and synthesis, assay, and theoretical study of new asymmetric 1, 2-rasagiline carbamates Int. J. Mol. Sci. 2014, 15 (9) 17035-17064 10.3390/ijms150917035
    • (2014) Int. J. Mol. Sci. , vol.15 , Issue.9 , pp. 17035-17064
    • Durán, F.J.R.1    Alonso, N.2    Caamaño, O.3    García-Mera, X.4    Yañez, M.5    Prado-Prado, F.J.6    González-Díaz, H.7
  • 9
    • 0035342428 scopus 로고    scopus 로고
    • Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule
    • Chen, Y.; Zhi, D. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule Proteins: Struct., Funct., Genet. 2001, 43 (2) 217-226 10.1002/1097-0134(20010501)43:2<217::AID-PROT1032>3.0.CO;2-G
    • (2001) Proteins: Struct., Funct., Genet. , vol.43 , Issue.2 , pp. 217-226
    • Chen, Y.1    Zhi, D.2
  • 10
    • 8844263008 scopus 로고    scopus 로고
    • Docking and scoring in virtual screening for drug discovery: Methods and applications
    • Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications Nat. Rev. Drug Discovery 2004, 3 (11) 935-949 10.1038/nrd1549
    • (2004) Nat. Rev. Drug Discovery , vol.3 , Issue.11 , pp. 935-949
    • Kitchen, D.B.1    Decornez, H.2    Furr, J.R.3    Bajorath, J.4
  • 11
    • 84863535732 scopus 로고    scopus 로고
    • Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers
    • Periole, X.; Knepp, A. M.; Sakmar, T. P.; Marrink, S. J.; Huber, T. Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers J. Am. Chem. Soc. 2012, 134 (26) 10959-10965 10.1021/ja303286e
    • (2012) J. Am. Chem. Soc. , vol.134 , Issue.26 , pp. 10959-10965
    • Periole, X.1    Knepp, A.M.2    Sakmar, T.P.3    Marrink, S.J.4    Huber, T.5
  • 12
    • 84863695210 scopus 로고    scopus 로고
    • Prediction of drug-target interactions and drug repositioning via network-based inference
    • Cheng, F.; Liu, C.; Jiang, J.; Lu, W.; Li, W.; Liu, G.; Zhou, W.; Huang, J.; Tang, Y. Prediction of drug-target interactions and drug repositioning via network-based inference PLoS Comput. Biol. 2012, 8 (5) e1002503 10.1371/journal.pcbi.1002503
    • (2012) PLoS Comput. Biol. , vol.8 , Issue.5 , pp. e1002503
    • Cheng, F.1    Liu, C.2    Jiang, J.3    Lu, W.4    Li, W.5    Liu, G.6    Zhou, W.7    Huang, J.8    Tang, Y.9
  • 13
    • 84862215494 scopus 로고    scopus 로고
    • Drug-target interaction prediction by random walk on the heterogeneous network
    • Chen, X.; Liu, M.-X.; Yan, G.-Y. Drug-target interaction prediction by random walk on the heterogeneous network Mol. BioSyst. 2012, 8 (7) 1970-1978 10.1039/c2mb00002d
    • (2012) Mol. BioSyst. , vol.8 , Issue.7 , pp. 1970-1978
    • Chen, X.1    Liu, M.-X.2    Yan, G.-Y.3
  • 14
    • 47249146126 scopus 로고    scopus 로고
    • Drug target identification using side-effect similarity
    • Campillos, M.; Kuhn, M.; Gavin, A.-C.; Jensen, L. J.; Bork, P. Drug target identification using side-effect similarity Science 2008, 321 (5886) 263-266 10.1126/science.1158140
    • (2008) Science , vol.321 , Issue.5886 , pp. 263-266
    • Campillos, M.1    Kuhn, M.2    Gavin, A.-C.3    Jensen, L.J.4    Bork, P.5
  • 15
    • 55549101279 scopus 로고    scopus 로고
    • Finding multiple target optimal intervention in disease-related molecular network
    • Yang, K.; Bai, H.; Ouyang, Q.; Lai, L.; Tang, C. Finding multiple target optimal intervention in disease-related molecular network Mol. Syst. Biol. 2008, 4 (1) 228 10.1038/msb.2008.60
    • (2008) Mol. Syst. Biol. , vol.4 , Issue.1 , pp. 228
    • Yang, K.1    Bai, H.2    Ouyang, Q.3    Lai, L.4    Tang, C.5
  • 16
    • 84957561485 scopus 로고    scopus 로고
    • Computational Prediction of Drug□ Target Interactions Using Chemical, Biological, and Network Features
    • Cao, D. S.; Zhang, L. X.; Tan, G. S.; Xiang, Z.; Zeng, W. B.; Xu, Q. S.; Chen, A. F. Computational Prediction of Drug□ Target Interactions Using Chemical, Biological, and Network Features Mol. Inf. 2014, 33 (10) 669-681 10.1002/minf.201400009
    • (2014) Mol. Inf. , vol.33 , Issue.10 , pp. 669-681
    • Cao, D.S.1    Zhang, L.X.2    Tan, G.S.3    Xiang, Z.4    Zeng, W.B.5    Xu, Q.S.6    Chen, A.F.7
  • 17
    • 0345548661 scopus 로고    scopus 로고
    • Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
    • Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification J. Chem. Inf. Comput. Sci. 2003, 43 (6) 1882-1889 10.1021/ci0341161
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , Issue.6 , pp. 1882-1889
    • Byvatov, E.1    Fechner, U.2    Sadowski, J.3    Schneider, G.4
  • 18
    • 84953225344 scopus 로고    scopus 로고
    • Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives
    • Romero-Durán, F. J.; Alonso, N.; Yañez, M.; Caamaño, O.; García-Mera, X.; González-Díaz, H. Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives Neuropharmacology 2016, 103, 270-278 10.1016/j.neuropharm.2015.12.019
    • (2016) Neuropharmacology , vol.103 , pp. 270-278
    • Romero-Durán, F.J.1    Alonso, N.2    Yañez, M.3    Caamaño, O.4    García-Mera, X.5    González-Díaz, H.6
  • 19
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning Nature 2015, 521 (7553) 436-444 10.1038/nature14539
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 20
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
    • Alipanahi, B.; Delong, A.; Weirauch, M. T.; Frey, B. J. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning Nat. Biotechnol. 2015, 33 (8) 831-838 10.1038/nbt.3300
    • (2015) Nat. Biotechnol. , vol.33 , Issue.8 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 21
    • 84949267267 scopus 로고    scopus 로고
    • Improving protein fold recognition by deep learning networks
    • No. 17573
    • Jo, T.; Hou, J.; Eickholt, J.; Cheng, J. Improving protein fold recognition by deep learning networks Sci. Rep. 2015, 5, Article No. 17573 10.1038/srep17573
    • (2015) Sci. Rep. , vol.5 , pp. Article
    • Jo, T.1    Hou, J.2    Eickholt, J.3    Cheng, J.4
  • 22
    • 46249090791 scopus 로고    scopus 로고
    • Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
    • Yamanishi, Y.; Araki, M.; Gutteridge, A.; Honda, W.; Kanehisa, M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces Bioinformatics 2008, 24 (13) i232-i240 10.1093/bioinformatics/btn162
    • (2008) Bioinformatics , vol.24 , Issue.13 , pp. i232-i240
    • Yamanishi, Y.1    Araki, M.2    Gutteridge, A.3    Honda, W.4    Kanehisa, M.5
  • 23
    • 84915753460 scopus 로고    scopus 로고
    • Benchmarking a Wide Range of Chemical Descriptors for Drug-Target Interaction Prediction Using a Chemogenomic Approach
    • Sawada, R.; Kotera, M.; Yamanishi, Y. Benchmarking a Wide Range of Chemical Descriptors for Drug-Target Interaction Prediction Using a Chemogenomic Approach Mol. Inf. 2014, 33 (11-12) 719-731 10.1002/minf.201400066
    • (2014) Mol. Inf. , vol.33 , Issue.1112 , pp. 719-731
    • Sawada, R.1    Kotera, M.2    Yamanishi, Y.3
  • 24
    • 84867908823 scopus 로고    scopus 로고
    • Large-scale prediction of drug-target interactions using protein sequences and drug topological structures
    • Cao, D.-S.; Liu, S.; Xu, Q.-S.; Lu, H.-M.; Huang, J.-H.; Hu, Q.-N.; Liang, Y.-Z. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures Anal. Chim. Acta 2012, 752, 1-10 10.1016/j.aca.2012.09.021
    • (2012) Anal. Chim. Acta , vol.752 , pp. 1-10
    • Cao, D.-S.1    Liu, S.2    Xu, Q.-S.3    Lu, H.-M.4    Huang, J.-H.5    Hu, Q.-N.6    Liang, Y.-Z.7
  • 25
    • 69849094133 scopus 로고    scopus 로고
    • Supervised prediction of drug-target interactions using bipartite local models
    • Bleakley, K.; Yamanishi, Y. Supervised prediction of drug-target interactions using bipartite local models Bioinformatics 2009, 25 (18) 2397-2403 10.1093/bioinformatics/btp433
    • (2009) Bioinformatics , vol.25 , Issue.18 , pp. 2397-2403
    • Bleakley, K.1    Yamanishi, Y.2
  • 26
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. R. Induction of decision trees Machine Learning 1986, 1 (1) 81-106 10.1023/A:1022643204877
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 29
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • Rogers, D.; Hahn, M. Extended-connectivity fingerprints J. Chem. Inf. Model. 2010, 50 (5) 742-754 10.1021/ci100050t
    • (2010) J. Chem. Inf. Model. , vol.50 , Issue.5 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 30
    • 84875576158 scopus 로고    scopus 로고
    • Propy: A tool to generate various modes of Chou's PseAAC
    • Cao, D.-S.; Xu, Q.-S.; Liang, Y.-Z. propy: a tool to generate various modes of Chou's PseAAC Bioinformatics 2013, 29 (7) 960-962 10.1093/bioinformatics/btt072
    • (2013) Bioinformatics , vol.29 , Issue.7 , pp. 960-962
    • Cao, D.-S.1    Xu, Q.-S.2    Liang, Y.-Z.3
  • 31
    • 84872506495 scopus 로고    scopus 로고
    • A practical guide to training restricted boltzmann machines
    • Montavon, G. Orr, G. B. Müller, K.-R. Springer: Berlin
    • Hinton, G. E. A practical guide to training restricted boltzmann machines. In Neural Networks: Tricks of the Trade; Montavon, G.; Orr, G. B.; Müller, K.-R., Eds.; Springer: Berlin, 2012; pp 599-619.
    • (2012) Neural Networks: Tricks of the Trade , pp. 599-619
    • Hinton, G.E.1
  • 32
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E.; Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks Science 2006, 313 (5786) 504-507 10.1126/science.1127647
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 33
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E.; Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets Neural computation 2006, 18 (7) 1527-1554 10.1162/neco.2006.18.7.1527
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 35
    • 0033833321 scopus 로고    scopus 로고
    • Drospirenone: Pharmacology and pharmacokinetics of a unique progestogen
    • Krattenmacher, R. Drospirenone: pharmacology and pharmacokinetics of a unique progestogen Contraception 2000, 62 (1) 29-38 10.1016/S0010-7824(00)00133-5
    • (2000) Contraception , vol.62 , Issue.1 , pp. 29-38
    • Krattenmacher, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.