-
1
-
-
84957037250
-
A multiple kernel learning algorithm for drug-target interaction prediction
-
Nascimento, A. C.; Prudêncio, R. B.; Costa, I. G. A multiple kernel learning algorithm for drug-target interaction prediction BMC Bioinf. 2016, 17, 1 10.1186/s12859-016-0890-3
-
(2016)
BMC Bioinf.
, vol.17
, pp. 1
-
-
Nascimento, A.C.1
Prudêncio, R.B.2
Costa, I.G.3
-
2
-
-
84991328213
-
Drug-target interaction prediction: Databases, web servers and computational models
-
Chen, X.; Yan, C. C.; Zhang, X.; Zhang, X.; Dai, F.; Yin, J.; Zhang, Y. Drug-target interaction prediction: databases, web servers and computational models Briefings Bioinf. 2016, 17 (4) 696-712 10.1093/bib/bbv066
-
(2016)
Briefings Bioinf.
, vol.17
, Issue.4
, pp. 696-712
-
-
Chen, X.1
Yan, C.C.2
Zhang, X.3
Zhang, X.4
Dai, F.5
Yin, J.6
Zhang, Y.7
-
3
-
-
84876888105
-
Challenges and opportunities of drug repositioning
-
Novac, N. Challenges and opportunities of drug repositioning Trends Pharmacol. Sci. 2013, 34 (5) 267-272 10.1016/j.tips.2013.03.004
-
(2013)
Trends Pharmacol. Sci.
, vol.34
, Issue.5
, pp. 267-272
-
-
Novac, N.1
-
4
-
-
77954230951
-
Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
-
Yamanishi, Y.; Kotera, M.; Kanehisa, M.; Goto, S. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework Bioinformatics 2010, 26 (12) i246-i254 10.1093/bioinformatics/btq176
-
(2010)
Bioinformatics
, vol.26
, Issue.12
, pp. i246-i254
-
-
Yamanishi, Y.1
Kotera, M.2
Kanehisa, M.3
Goto, S.4
-
5
-
-
84904733491
-
QSAR multi-target in drug discovery: A review
-
Zanni, R.; Galvez-Llompart, M.; Galvez, J.; Garcia-Domenech, R. QSAR multi-target in drug discovery: a review Curr. Comput.-Aided Drug Des. 2014, 10 (2) 129-136 10.2174/157340991002140708105124
-
(2014)
Curr. Comput.-Aided Drug Des.
, vol.10
, Issue.2
, pp. 129-136
-
-
Zanni, R.1
Galvez-Llompart, M.2
Galvez, J.3
Garcia-Domenech, R.4
-
6
-
-
79953716848
-
MIND-BEST: Web Server for Drugs and Target Discovery; Design, Synthesis, and Assay of MAO-B Inhibitors and Theoretical- Experimental Study of G3PDH Protein from Trichomonas gallinae
-
González-Díaz, H.; Prado-Prado, F.; García-Mera, X.; Alonso, N.; Abeijón, P.; Caamano, O.; Yáñez, M.; Munteanu, C. R.; Pazos, A.; Dea-Ayuela, M. A. et al. MIND-BEST: Web Server for Drugs and Target Discovery; Design, Synthesis, and Assay of MAO-B Inhibitors and Theoretical- Experimental Study of G3PDH Protein from Trichomonas gallinae J. Proteome Res. 2011, 10 (4) 1698-1718 10.1021/pr101009e
-
(2011)
J. Proteome Res.
, vol.10
, Issue.4
, pp. 1698-1718
-
-
González-Díaz, H.1
Prado-Prado, F.2
García-Mera, X.3
Alonso, N.4
Abeijón, P.5
Caamano, O.6
Yáñez, M.7
Munteanu, C.R.8
Pazos, A.9
Dea-Ayuela, M.A.10
-
7
-
-
67249095008
-
Alignment-Free Prediction of a Drug- Target Complex Network Based on Parameters of Drug Connectivity and Protein Sequence of Receptors
-
Vina, D.; Uriarte, E.; Orallo, F.; González-Díaz, H. Alignment-Free Prediction of a Drug- Target Complex Network Based on Parameters of Drug Connectivity and Protein Sequence of Receptors Mol. Pharmaceutics 2009, 6 (3) 825-835 10.1021/mp800102c
-
(2009)
Mol. Pharmaceutics
, vol.6
, Issue.3
, pp. 825-835
-
-
Vina, D.1
Uriarte, E.2
Orallo, F.3
González-Díaz, H.4
-
8
-
-
84907863082
-
Prediction of multi-target networks of neuroprotective compounds with entropy indices and synthesis, assay, and theoretical study of new asymmetric 1, 2-rasagiline carbamates
-
Durán, F. J. R.; Alonso, N.; Caamaño, O.; García-Mera, X.; Yañez, M.; Prado-Prado, F. J.; González-Díaz, H. Prediction of multi-target networks of neuroprotective compounds with entropy indices and synthesis, assay, and theoretical study of new asymmetric 1, 2-rasagiline carbamates Int. J. Mol. Sci. 2014, 15 (9) 17035-17064 10.3390/ijms150917035
-
(2014)
Int. J. Mol. Sci.
, vol.15
, Issue.9
, pp. 17035-17064
-
-
Durán, F.J.R.1
Alonso, N.2
Caamaño, O.3
García-Mera, X.4
Yañez, M.5
Prado-Prado, F.J.6
González-Díaz, H.7
-
9
-
-
0035342428
-
Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule
-
Chen, Y.; Zhi, D. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule Proteins: Struct., Funct., Genet. 2001, 43 (2) 217-226 10.1002/1097-0134(20010501)43:2<217::AID-PROT1032>3.0.CO;2-G
-
(2001)
Proteins: Struct., Funct., Genet.
, vol.43
, Issue.2
, pp. 217-226
-
-
Chen, Y.1
Zhi, D.2
-
10
-
-
8844263008
-
Docking and scoring in virtual screening for drug discovery: Methods and applications
-
Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications Nat. Rev. Drug Discovery 2004, 3 (11) 935-949 10.1038/nrd1549
-
(2004)
Nat. Rev. Drug Discovery
, vol.3
, Issue.11
, pp. 935-949
-
-
Kitchen, D.B.1
Decornez, H.2
Furr, J.R.3
Bajorath, J.4
-
11
-
-
84863535732
-
Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers
-
Periole, X.; Knepp, A. M.; Sakmar, T. P.; Marrink, S. J.; Huber, T. Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers J. Am. Chem. Soc. 2012, 134 (26) 10959-10965 10.1021/ja303286e
-
(2012)
J. Am. Chem. Soc.
, vol.134
, Issue.26
, pp. 10959-10965
-
-
Periole, X.1
Knepp, A.M.2
Sakmar, T.P.3
Marrink, S.J.4
Huber, T.5
-
12
-
-
84863695210
-
Prediction of drug-target interactions and drug repositioning via network-based inference
-
Cheng, F.; Liu, C.; Jiang, J.; Lu, W.; Li, W.; Liu, G.; Zhou, W.; Huang, J.; Tang, Y. Prediction of drug-target interactions and drug repositioning via network-based inference PLoS Comput. Biol. 2012, 8 (5) e1002503 10.1371/journal.pcbi.1002503
-
(2012)
PLoS Comput. Biol.
, vol.8
, Issue.5
, pp. e1002503
-
-
Cheng, F.1
Liu, C.2
Jiang, J.3
Lu, W.4
Li, W.5
Liu, G.6
Zhou, W.7
Huang, J.8
Tang, Y.9
-
13
-
-
84862215494
-
Drug-target interaction prediction by random walk on the heterogeneous network
-
Chen, X.; Liu, M.-X.; Yan, G.-Y. Drug-target interaction prediction by random walk on the heterogeneous network Mol. BioSyst. 2012, 8 (7) 1970-1978 10.1039/c2mb00002d
-
(2012)
Mol. BioSyst.
, vol.8
, Issue.7
, pp. 1970-1978
-
-
Chen, X.1
Liu, M.-X.2
Yan, G.-Y.3
-
14
-
-
47249146126
-
Drug target identification using side-effect similarity
-
Campillos, M.; Kuhn, M.; Gavin, A.-C.; Jensen, L. J.; Bork, P. Drug target identification using side-effect similarity Science 2008, 321 (5886) 263-266 10.1126/science.1158140
-
(2008)
Science
, vol.321
, Issue.5886
, pp. 263-266
-
-
Campillos, M.1
Kuhn, M.2
Gavin, A.-C.3
Jensen, L.J.4
Bork, P.5
-
15
-
-
55549101279
-
Finding multiple target optimal intervention in disease-related molecular network
-
Yang, K.; Bai, H.; Ouyang, Q.; Lai, L.; Tang, C. Finding multiple target optimal intervention in disease-related molecular network Mol. Syst. Biol. 2008, 4 (1) 228 10.1038/msb.2008.60
-
(2008)
Mol. Syst. Biol.
, vol.4
, Issue.1
, pp. 228
-
-
Yang, K.1
Bai, H.2
Ouyang, Q.3
Lai, L.4
Tang, C.5
-
16
-
-
84957561485
-
Computational Prediction of Drug□ Target Interactions Using Chemical, Biological, and Network Features
-
Cao, D. S.; Zhang, L. X.; Tan, G. S.; Xiang, Z.; Zeng, W. B.; Xu, Q. S.; Chen, A. F. Computational Prediction of Drug□ Target Interactions Using Chemical, Biological, and Network Features Mol. Inf. 2014, 33 (10) 669-681 10.1002/minf.201400009
-
(2014)
Mol. Inf.
, vol.33
, Issue.10
, pp. 669-681
-
-
Cao, D.S.1
Zhang, L.X.2
Tan, G.S.3
Xiang, Z.4
Zeng, W.B.5
Xu, Q.S.6
Chen, A.F.7
-
17
-
-
0345548661
-
Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
-
Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification J. Chem. Inf. Comput. Sci. 2003, 43 (6) 1882-1889 10.1021/ci0341161
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, Issue.6
, pp. 1882-1889
-
-
Byvatov, E.1
Fechner, U.2
Sadowski, J.3
Schneider, G.4
-
18
-
-
84953225344
-
Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives
-
Romero-Durán, F. J.; Alonso, N.; Yañez, M.; Caamaño, O.; García-Mera, X.; González-Díaz, H. Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives Neuropharmacology 2016, 103, 270-278 10.1016/j.neuropharm.2015.12.019
-
(2016)
Neuropharmacology
, vol.103
, pp. 270-278
-
-
Romero-Durán, F.J.1
Alonso, N.2
Yañez, M.3
Caamaño, O.4
García-Mera, X.5
González-Díaz, H.6
-
19
-
-
84930630277
-
Deep learning
-
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning Nature 2015, 521 (7553) 436-444 10.1038/nature14539
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
20
-
-
84938888109
-
Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
-
Alipanahi, B.; Delong, A.; Weirauch, M. T.; Frey, B. J. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning Nat. Biotechnol. 2015, 33 (8) 831-838 10.1038/nbt.3300
-
(2015)
Nat. Biotechnol.
, vol.33
, Issue.8
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
21
-
-
84949267267
-
Improving protein fold recognition by deep learning networks
-
No. 17573
-
Jo, T.; Hou, J.; Eickholt, J.; Cheng, J. Improving protein fold recognition by deep learning networks Sci. Rep. 2015, 5, Article No. 17573 10.1038/srep17573
-
(2015)
Sci. Rep.
, vol.5
, pp. Article
-
-
Jo, T.1
Hou, J.2
Eickholt, J.3
Cheng, J.4
-
22
-
-
46249090791
-
Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
-
Yamanishi, Y.; Araki, M.; Gutteridge, A.; Honda, W.; Kanehisa, M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces Bioinformatics 2008, 24 (13) i232-i240 10.1093/bioinformatics/btn162
-
(2008)
Bioinformatics
, vol.24
, Issue.13
, pp. i232-i240
-
-
Yamanishi, Y.1
Araki, M.2
Gutteridge, A.3
Honda, W.4
Kanehisa, M.5
-
23
-
-
84915753460
-
Benchmarking a Wide Range of Chemical Descriptors for Drug-Target Interaction Prediction Using a Chemogenomic Approach
-
Sawada, R.; Kotera, M.; Yamanishi, Y. Benchmarking a Wide Range of Chemical Descriptors for Drug-Target Interaction Prediction Using a Chemogenomic Approach Mol. Inf. 2014, 33 (11-12) 719-731 10.1002/minf.201400066
-
(2014)
Mol. Inf.
, vol.33
, Issue.1112
, pp. 719-731
-
-
Sawada, R.1
Kotera, M.2
Yamanishi, Y.3
-
24
-
-
84867908823
-
Large-scale prediction of drug-target interactions using protein sequences and drug topological structures
-
Cao, D.-S.; Liu, S.; Xu, Q.-S.; Lu, H.-M.; Huang, J.-H.; Hu, Q.-N.; Liang, Y.-Z. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures Anal. Chim. Acta 2012, 752, 1-10 10.1016/j.aca.2012.09.021
-
(2012)
Anal. Chim. Acta
, vol.752
, pp. 1-10
-
-
Cao, D.-S.1
Liu, S.2
Xu, Q.-S.3
Lu, H.-M.4
Huang, J.-H.5
Hu, Q.-N.6
Liang, Y.-Z.7
-
25
-
-
69849094133
-
Supervised prediction of drug-target interactions using bipartite local models
-
Bleakley, K.; Yamanishi, Y. Supervised prediction of drug-target interactions using bipartite local models Bioinformatics 2009, 25 (18) 2397-2403 10.1093/bioinformatics/btp433
-
(2009)
Bioinformatics
, vol.25
, Issue.18
, pp. 2397-2403
-
-
Bleakley, K.1
Yamanishi, Y.2
-
26
-
-
33744584654
-
Induction of decision trees
-
Quinlan, J. R. Induction of decision trees Machine Learning 1986, 1 (1) 81-106 10.1023/A:1022643204877
-
(1986)
Machine Learning
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
27
-
-
38549151817
-
DrugBank: A knowledgebase for drugs, drug actions and drug targets
-
Wishart, D. S.; Knox, C.; Guo, A. C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: a knowledgebase for drugs, drug actions and drug targets Nucleic Acids Res. 2008, 36, D901-D906 10.1093/nar/gkm958
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. D901-D906
-
-
Wishart, D.S.1
Knox, C.2
Guo, A.C.3
Cheng, D.4
Shrivastava, S.5
Tzur, D.6
Gautam, B.7
Hassanali, M.8
-
28
-
-
84949646594
-
ChemDes: An integrated web-based platform for molecular descriptor and fingerprint computation
-
Dong, J.; Cao, D.-S.; Miao, H.-Y.; Liu, S.; Deng, B.-C.; Yun, Y.-H.; Wang, N.-N.; Lu, A.-P.; Zeng, W.-B.; Chen, A. F. ChemDes: an integrated web-based platform for molecular descriptor and fingerprint computation J. Cheminf. 2015, 7 (1) 1-10 10.1186/s13321-015-0109-z
-
(2015)
J. Cheminf.
, vol.7
, Issue.1
, pp. 1-10
-
-
Dong, J.1
Cao, D.-S.2
Miao, H.-Y.3
Liu, S.4
Deng, B.-C.5
Yun, Y.-H.6
Wang, N.-N.7
Lu, A.-P.8
Zeng, W.-B.9
Chen, A.F.10
-
29
-
-
77952772341
-
Extended-connectivity fingerprints
-
Rogers, D.; Hahn, M. Extended-connectivity fingerprints J. Chem. Inf. Model. 2010, 50 (5) 742-754 10.1021/ci100050t
-
(2010)
J. Chem. Inf. Model.
, vol.50
, Issue.5
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
30
-
-
84875576158
-
Propy: A tool to generate various modes of Chou's PseAAC
-
Cao, D.-S.; Xu, Q.-S.; Liang, Y.-Z. propy: a tool to generate various modes of Chou's PseAAC Bioinformatics 2013, 29 (7) 960-962 10.1093/bioinformatics/btt072
-
(2013)
Bioinformatics
, vol.29
, Issue.7
, pp. 960-962
-
-
Cao, D.-S.1
Xu, Q.-S.2
Liang, Y.-Z.3
-
31
-
-
84872506495
-
A practical guide to training restricted boltzmann machines
-
Montavon, G. Orr, G. B. Müller, K.-R. Springer: Berlin
-
Hinton, G. E. A practical guide to training restricted boltzmann machines. In Neural Networks: Tricks of the Trade; Montavon, G.; Orr, G. B.; Müller, K.-R., Eds.; Springer: Berlin, 2012; pp 599-619.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 599-619
-
-
Hinton, G.E.1
-
32
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G. E.; Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks Science 2006, 313 (5786) 504-507 10.1126/science.1127647
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
33
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E.; Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets Neural computation 2006, 18 (7) 1527-1554 10.1162/neco.2006.18.7.1527
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
34
-
-
84937942087
-
-
arXiv preprint arXiv:1211.5590. arXiv e-print archive
-
Bastien, F.; Lamblin, P.; Pascanu, R.; Bergstra, J.; Goodfellow, I.; Bergeron, A.; Bouchard, N.; Warde-Farley, D.; Bengio, Y. Theano: new features and speed improvements. 2012. arXiv preprint arXiv:1211.5590. arXiv e-print archive. https://arxiv.org/pdf/1009.3589.pdf
-
(2012)
Theano: New Features and Speed Improvements
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.5
Bergeron, A.6
Bouchard, N.7
Warde-Farley, D.8
Bengio, Y.9
-
35
-
-
0033833321
-
Drospirenone: Pharmacology and pharmacokinetics of a unique progestogen
-
Krattenmacher, R. Drospirenone: pharmacology and pharmacokinetics of a unique progestogen Contraception 2000, 62 (1) 29-38 10.1016/S0010-7824(00)00133-5
-
(2000)
Contraception
, vol.62
, Issue.1
, pp. 29-38
-
-
Krattenmacher, R.1
-
36
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives Pattern Analysis and Machine Intelligence, IEEE Transactions on 2013, 35 (8) 1798-1828 10.1109/TPAMI.2013.50
-
(2013)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
|