-
1
-
-
84929858006
-
The emerging complexity of gene fusions in cancer
-
Mertens F, Johansson B, Fioretos T, et al. The emerging complexity of gene fusions in cancer. Nature Rev Cancer 2015; 15: 371–381.
-
(2015)
Nature Rev Cancer
, vol.15
, pp. 371-381
-
-
Mertens, F.1
Johansson, B.2
Fioretos, T.3
-
2
-
-
0034621854
-
Frequent chromosomal translocations induced by DNA double-strand breaks
-
Richardson C, Jasin M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 2000; 405: 697–700.
-
(2000)
Nature
, vol.405
, pp. 697-700
-
-
Richardson, C.1
Jasin, M.2
-
3
-
-
67649757162
-
Chromosomal translocations induced at specified loci in human stem cells
-
Brunet E, Simsek D, Tomishima M, et al. Chromosomal translocations induced at specified loci in human stem cells. Proc Natl Acad Sci U S A 2009; 106: 10620–10625.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 10620-10625
-
-
Brunet, E.1
Simsek, D.2
Tomishima, M.3
-
4
-
-
84880062591
-
Cancer translocations in human cells induced by zinc finger and TALE nucleases
-
Piganeau M, Ghezraoui H, De Cian A, et al. Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res 2013; 23: 1182–1193.
-
(2013)
Genome Res
, vol.23
, pp. 1182-1193
-
-
Piganeau, M.1
Ghezraoui, H.2
De Cian, A.3
-
5
-
-
84899490344
-
Targeted genomic rearrangements using CRISPR/Cas technology
-
Choi PS, Meyerson M. Targeted genomic rearrangements using CRISPR/Cas technology. Nature Commun 2014; 5: 3728.
-
(2014)
Nature Commun
, vol.5
, pp. 3728
-
-
Choi, P.S.1
Meyerson, M.2
-
6
-
-
84901951241
-
Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR–Cas9 system
-
Torres R, Martin MC, Garcia A, et al. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR–Cas9 system. Nature Commun 2014; 5: 3964.
-
(2014)
Nature Commun
, vol.5
, pp. 3964
-
-
Torres, R.1
Martin, M.C.2
Garcia, A.3
-
7
-
-
84912078930
-
Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology
-
Blasco RB, Karaca E, Ambrogio C, et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep 2014; 9: 1219–1227.
-
(2014)
Cell Rep
, vol.9
, pp. 1219-1227
-
-
Blasco, R.B.1
Karaca, E.2
Ambrogio, C.3
-
8
-
-
84922735816
-
In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system
-
Maddalo D, Manchado E, Concepcion CP, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 2014; 516: 423–427.
-
(2014)
Nature
, vol.516
, pp. 423-427
-
-
Maddalo, D.1
Manchado, E.2
Concepcion, C.P.3
-
9
-
-
84965190468
-
Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells
-
Liu J, Gaj T, Yang Y, et al. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nature Protoc 2015; 10: 1842–1859.
-
(2015)
Nature Protoc
, vol.10
, pp. 1842-1859
-
-
Liu, J.1
Gaj, T.2
Yang, Y.3
-
10
-
-
84924404064
-
Modeling of the human alveolar rhabdomyosarcoma Pax3–Foxo1 chromosome translocation in mouse myoblasts using CRISPR–Cas9 nuclease
-
Lagutina IV, Valentine V, Picchione F, et al. Modeling of the human alveolar rhabdomyosarcoma Pax3–Foxo1 chromosome translocation in mouse myoblasts using CRISPR–Cas9 nuclease. PLoS Genet 2015; 11: e1004951.
-
(2015)
PLoS Genet
, vol.11
-
-
Lagutina, I.V.1
Valentine, V.2
Picchione, F.3
-
11
-
-
30444458875
-
A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair
-
Weinstock DM, Elliott B, Jasin M. A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair. Blood 2006; 107: 777–780.
-
(2006)
Blood
, vol.107
, pp. 777-780
-
-
Weinstock, D.M.1
Elliott, B.2
Jasin, M.3
-
12
-
-
84907976219
-
Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining
-
Ghezraoui H, Piganeau M, Renouf B, et al. Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol Cell 2014; 55: 829–842.
-
(2014)
Mol Cell
, vol.55
, pp. 829-842
-
-
Ghezraoui, H.1
Piganeau, M.2
Renouf, B.3
-
13
-
-
84884903662
-
A reversible gene trap collection empowers haploid genetics in human cells
-
Burckstummer T, Banning C, Hainzl P, et al. A reversible gene trap collection empowers haploid genetics in human cells. Nature Methods 2013; 10: 965–971.
-
(2013)
Nature Methods
, vol.10
, pp. 965-971
-
-
Burckstummer, T.1
Banning, C.2
Hainzl, P.3
-
14
-
-
84856870979
-
Molecular pathogenesis of Ewing sarcoma: new therapeutic and transcriptional targets
-
Lessnick SL, Ladanyi M. Molecular pathogenesis of Ewing sarcoma: new therapeutic and transcriptional targets. Annu Rev Pathol 2012; 7: 145–159.
-
(2012)
Annu Rev Pathol
, vol.7
, pp. 145-159
-
-
Lessnick, S.L.1
Ladanyi, M.2
-
15
-
-
33644537353
-
The orphan nuclear receptor DAX1 is up-regulated by the EWS/FLI1 oncoprotein and is highly expressed in Ewing tumors
-
Mendiola M, Carrillo J, Garcia E, et al. The orphan nuclear receptor DAX1 is up-regulated by the EWS/FLI1 oncoprotein and is highly expressed in Ewing tumors. Int J Cancer 2006; 118: 1381–1389.
-
(2006)
Int J Cancer
, vol.118
, pp. 1381-1389
-
-
Mendiola, M.1
Carrillo, J.2
Garcia, E.3
-
16
-
-
43149105398
-
Alteration of cyclin D1 transcript elongation by a mutated transcription factor up-regulates the oncogenic D1b splice isoform in cancer
-
Sanchez G, Bittencourt D, Laud K, et al. Alteration of cyclin D1 transcript elongation by a mutated transcription factor up-regulates the oncogenic D1b splice isoform in cancer. Proc Natl Acad Sci U S A 2008; 105: 6004–6009.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 6004-6009
-
-
Sanchez, G.1
Bittencourt, D.2
Laud, K.3
-
17
-
-
33646366123
-
Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma
-
Smith R, Owen LA, Trem DJ, et al. Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma. Cancer Cell 2006; 9: 405–416.
-
(2006)
Cancer Cell
, vol.9
, pp. 405-416
-
-
Smith, R.1
Owen, L.A.2
Trem, D.J.3
-
18
-
-
84912064689
-
EWS–FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma
-
Riggi N, Knoechel B, Gillespie SM, et al. EWS–FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 2014; 26: 668–681.
-
(2014)
Cancer Cell
, vol.26
, pp. 668-681
-
-
Riggi, N.1
Knoechel, B.2
Gillespie, S.M.3
-
19
-
-
84925372989
-
Oncogenic fusion protein EWS–FLI1 is a network hub that regulates alternative splicing
-
Selvanathan SP, Graham GT, Erkizan HV, et al. Oncogenic fusion protein EWS–FLI1 is a network hub that regulates alternative splicing. Proc Natl Acad Sci U S A 2015; 112: E1307-E1316.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. E1307-E1316
-
-
Selvanathan, S.P.1
Graham, G.T.2
Erkizan, H.V.3
-
21
-
-
0028246185
-
Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor
-
Ladanyi M, Gerald W. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res 1994; 54: 2837–2840.
-
(1994)
Cancer Res
, vol.54
, pp. 2837-2840
-
-
Ladanyi, M.1
Gerald, W.2
-
22
-
-
0028799662
-
Characterization of the genomic breakpoint and chimeric transcripts in the EWS–WT1 gene fusion of desmoplastic small round cell tumor
-
Gerald WL, Rosai J, Ladanyi M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS–WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad sci U S A 1995; 92: 1028–1032.
-
(1995)
Proc Natl Acad sci U S A
, vol.92
, pp. 1028-1032
-
-
Gerald, W.L.1
Rosai, J.2
Ladanyi, M.3
-
23
-
-
0031688631
-
Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small round-cell tumor and its variants
-
Gerald WL, Ladanyi M, de Alava E, et al. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small round-cell tumor and its variants. J Clin Oncol 1998; 16: 3028–3036.
-
(1998)
J Clin Oncol
, vol.16
, pp. 3028-3036
-
-
Gerald, W.L.1
Ladanyi, M.2
de Alava, E.3
-
24
-
-
84905978215
-
EWS–WT1 oncoprotein activates neuronal reprogramming factor ASCL1 and promotes neural differentiation
-
Kang HJ, Park JH, Chen W, et al. EWS–WT1 oncoprotein activates neuronal reprogramming factor ASCL1 and promotes neural differentiation. Cancer Res 2014; 74: 4526–4535.
-
(2014)
Cancer Res
, vol.74
, pp. 4526-4535
-
-
Kang, H.J.1
Park, J.H.2
Chen, W.3
-
25
-
-
80054782854
-
Promiscuous partnerships in Ewing's sarcoma
-
Sankar S, Lessnick SL. Promiscuous partnerships in Ewing's sarcoma. Cancer Genet 2011; 204: 351–365.
-
(2011)
Cancer Genet
, vol.204
, pp. 351-365
-
-
Sankar, S.1
Lessnick, S.L.2
-
26
-
-
79960847016
-
Advances in sarcoma genomics and new therapeutic targets
-
Taylor BS, Barretina J, Maki RG, et al. Advances in sarcoma genomics and new therapeutic targets. Nature Rev Cancer 2011; 11: 541–557.
-
(2011)
Nature Rev Cancer
, vol.11
, pp. 541-557
-
-
Taylor, B.S.1
Barretina, J.2
Maki, R.G.3
-
27
-
-
84856555606
-
Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways
-
Shukla N, Ameur N, Yilmaz I, et al. Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin Cancer Res 2012; 18: 748–757.
-
(2012)
Clin Cancer Res
, vol.18
, pp. 748-757
-
-
Shukla, N.1
Ameur, N.2
Yilmaz, I.3
-
28
-
-
84857985225
-
RET, ROS1 and ALK fusions in lung cancer
-
Takeuchi K, Soda M, Togashi Y, et al. RET, ROS1 and ALK fusions in lung cancer. Nature Med 2012; 18: 378–381.
-
(2012)
Nature Med
, vol.18
, pp. 378-381
-
-
Takeuchi, K.1
Soda, M.2
Togashi, Y.3
-
29
-
-
34248203558
-
Ewing sarcoma gene EWS is essential for meiosis and B lymphocyte development
-
Li H, Watford W, Li C, et al. Ewing sarcoma gene EWS is essential for meiosis and B lymphocyte development. J Clin Invest 2007; 117: 1314–1323.
-
(2007)
J Clin Invest
, vol.117
, pp. 1314-1323
-
-
Li, H.1
Watford, W.2
Li, C.3
-
30
-
-
84983738815
-
Loss of Ewing sarcoma EWS allele promotes tumorigenesis by inducing chromosomal instability in zebrafish
-
Park H, Galbraith R, Turner T, et al. Loss of Ewing sarcoma EWS allele promotes tumorigenesis by inducing chromosomal instability in zebrafish. Sci Rep 2016; 6: 32297.
-
(2016)
Sci Rep
, vol.6
, pp. 32297
-
-
Park, H.1
Galbraith, R.2
Turner, T.3
|