메뉴 건너뛰기




Volumn 7, Issue 6, 2014, Pages 2066-2079

Classification of hyperspectral data using an AdaBoostSVM technique applied on band clusters

Author keywords

Adaptive Boosting (AdaBoost); band clustering; hyperspectral data; multiple classifier systems (MCSs); support vector machines (SVMs)

Indexed keywords

SAMPLING; SPECTROSCOPY; SUPPORT VECTOR MACHINES;

EID: 84905820825     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2013.2292901     Document Type: Article
Times cited : (54)

References (46)
  • 3
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognition
    • Jan.
    • G. F. Hughes, "On the mean accuracy of statistical pattern recognition," IEEE Trans. Inf. Theory, vol. 14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 4
    • 84859048363 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach
    • Apr.
    • K. Bernard, Y. Tarabalka, J. Angulo, J. Chanussot, and J. A. Benediktsson, "Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach," IEEE Trans. Image Process., vol. 21, no. 4, pp. 2008-2021, Apr. 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.4 , pp. 2008-2021
    • Bernard, K.1    Tarabalka, Y.2    Angulo, J.3    Chanussot, J.4    Benediktsson, J.A.5
  • 5
    • 84872922940 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
    • Feb.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 844-856, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 844-856
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 7
    • 82155191285 scopus 로고    scopus 로고
    • Hyperspectral image classification with independent component discriminant analysis
    • Dec.
    • A. Villa, J.A. Benediktsson, J. Chanussot,and C. Jutten, "Hyperspectral image classification with independent component discriminant analysis," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12, pp. 4865-4876, Dec. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.12 , pp. 4865-4876
    • Villa, A.1    Benediktsson, J.A.2    Chanussotand, J.3    Jutten, C.4
  • 8
    • 77957990796 scopus 로고    scopus 로고
    • An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine
    • Feb.
    • S. Li, H. Wu, D. Wan, and J. Zhu, "An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine," Knowledge-Based Syst., vol. 24, no. 1, pp. 40-48, Feb. 2011.
    • (2011) Knowledge-Based Syst. , vol.24 , Issue.1 , pp. 40-48
    • Li, S.1    Wu, H.2    Wan, D.3    Zhu, J.4
  • 9
    • 34250815597 scopus 로고    scopus 로고
    • Adaptive branch and bound algorithm for selecting optimal features
    • DOI 10.1016/j.patrec.2007.02.015, PII S0167865507000670
    • S. Nakariyakul and D. P. Casasent, "Adaptive branch and bound algorithm for selecting optimal features," Pattern Recogn. Lett., vol. 28, no. 12, pp. 1415-1427, Sep. 2007. (Pubitemid 46990579)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.12 , pp. 1415-1427
    • Nakariyakul, S.1    Casasent, D.P.2
  • 11
    • 79151469566 scopus 로고    scopus 로고
    • Band subset based clustering and fusion for hyperspectral imagery classification
    • Feb.
    • Y. Zhao, L. Zhang, and S. G. Kong, "Band subset based clustering and fusion for hyperspectral imagery classification," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 747-756, Feb. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.2 , pp. 747-756
    • Zhao, Y.1    Zhang, L.2    Kong, S.G.3
  • 12
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • May
    • L. I. Kuncheva and C. J. Whitaker, "Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy," Mach. Learn., vol. 51, no. 2, pp. 181-207, May 2003.
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 13
    • 53349155688 scopus 로고    scopus 로고
    • Hyperspectral feature space partitioning via mutual information for data fusion
    • Barcelona, Spain, Jul.
    • S. Prasad and L. M. Bruce, "Hyperspectral feature space partitioning via mutual information for data fusion," in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS 2007), Barcelona, Spain, Jul. 2007, pp. 4846-4849.
    • (2007) Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS 2007) , pp. 4846-4849
    • Prasad, S.1    Bruce, L.M.2
  • 14
    • 53349127642 scopus 로고    scopus 로고
    • Decision fusion with confidence-based weight assignment for hyperspectral target recognition
    • May
    • S. Prasad and L. M. Bruce, "Decision fusion with confidence-based weight assignment for hyperspectral target recognition," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 5, pp. 1448-1456, May 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.5 , pp. 1448-1456
    • Prasad, S.1    Bruce, L.M.2
  • 16
    • 84888299612 scopus 로고    scopus 로고
    • Hyperspectral remote sensing image classification based on rotation forest
    • Jan.
    • J. Xia, P. Du, X. He, and J. Chanussot, "Hyperspectral remote sensing image classification based on rotation forest," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 239-243, Jan. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.1 , pp. 239-243
    • Xia, J.1    Du, P.2    He, X.3    Chanussot, J.4
  • 17
    • 84872920883 scopus 로고    scopus 로고
    • Sparse kernel-based ensemble learning with fully optimized kernel parameters for hyperspectral classification problems
    • Feb.
    • P. Gurram and H. Kwon, "Sparse kernel-based ensemble learning with fully optimized kernel parameters for hyperspectral classification problems," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 787-801, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 787-801
    • Gurram, P.1    Kwon, H.2
  • 18
    • 84877927185 scopus 로고    scopus 로고
    • Non-uniform random feature selection and kernel density scoring with SVM based ensemble classification for hyperspectral image analysis
    • Apr.
    • S. Samiappan, S. Prasad, and L. M. Bruce, "Non-uniform random feature selection and kernel density scoring with SVM based ensemble classification for hyperspectral image analysis," IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 792-800, Apr. 2013.
    • (2013) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.6 , Issue.2 , pp. 792-800
    • Samiappan, S.1    Prasad, S.2    Bruce, L.M.3
  • 20
    • 84879547474 scopus 로고    scopus 로고
    • Band grouping versus band clustering in SVM ensemble classification of hyperspectral imagery
    • Jun.
    • B. Bigdeli, F. Samadzadegan, and P. Reinartz, "Band grouping versus band clustering in SVM ensemble classification of hyperspectral imagery," Photogramm. Eng. Remote Sens., vol. 79, no. 6, pp. 523-534, Jun. 2013.
    • (2013) Photogramm. Eng. Remote Sens. , vol.79 , Issue.6 , pp. 523-534
    • Bigdeli, B.1    Samadzadegan, F.2    Reinartz, P.3
  • 21
    • 79958718997 scopus 로고    scopus 로고
    • A classifier ensemble based on fusion of support vector machines for classifying hyperspectral data
    • Dec.
    • X. R. Ceamanos, B. Waske, J. A. Benediktsson, J. Chanussot, M. Fauvel, and J. R. Sveinsson, "A classifier ensemble based on fusion of support vector machines for classifying hyperspectral data," Int. J. Image Data Fusion, vol. 1, no. 4, pp. 293-307, Dec. 2010.
    • (2010) Int. J. Image Data Fusion , vol.1 , Issue.4 , pp. 293-307
    • Ceamanos, X.R.1    Waske, B.2    Benediktsson, J.A.3    Chanussot, J.4    Fauvel, M.5    Sveinsson, J.R.6
  • 22
    • 44649197212 scopus 로고    scopus 로고
    • AdaBoost with SVM-based component classifiers
    • Aug.
    • X. Li, L. Wang, and E. Sung, "AdaBoost with SVM-based component classifiers," Eng. Appl. Artif. Intell., vol. 21, no. 5, pp. 785-795, Aug. 2008.
    • (2008) Eng. Appl. Artif. Intell. , vol.21 , Issue.5 , pp. 785-795
    • Li, X.1    Wang, L.2    Sung, E.3
  • 23
    • 84888297753 scopus 로고    scopus 로고
    • Classification based on 3-D DWT and decision fusion for hyperspectral image analysis
    • Jan.
    • Z. Ye, S. Prasad, W. Li, J. E. Fowler, and M. He, "Classification based on 3-D DWT and decision fusion for hyperspectral image analysis," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 173-177, Jan. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.1 , pp. 173-177
    • Ye, Z.1    Prasad, S.2    Li, W.3    Fowler, J.E.4    He, M.5
  • 24
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119-139, Aug. 1997. (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 25
    • 0032635034 scopus 로고    scopus 로고
    • Classification of multisource and hyperspectral data based on decision fusion
    • May
    • J. A. Benediktsson and I. Kanellopoulos, "Classification of multisource and hyperspectral data based on decision fusion," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 3, pp. 1367-1377, May 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.3 , pp. 1367-1377
    • Benediktsson, J.A.1    Kanellopoulos, I.2
  • 26
    • 0036821351 scopus 로고    scopus 로고
    • Multiple classifiers applied to multisource remote sensing data
    • Oct.
    • G. J. Briem, J. A. Benediktsson, and J. R. Sveinsson, "Multiple classifiers applied to multisource remote sensing data," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 10, pp. 2291-2299, Oct. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.10 , pp. 2291-2299
    • Briem, G.J.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 27
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of random forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • Jun.
    • J. C. W. Chan and D. Paelinckx, "Evaluation of random forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery," Remote Sens. Environ., vol. 112, no. 6, pp. 2999-3011, Jun. 2008.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.6 , pp. 2999-3011
    • Chan, J.C.W.1    Paelinckx, D.2
  • 28
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Mach. Learn., vol. 26, no. 2, pp. 123-140, Aug. 1996. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 30
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005. (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 33
    • 84872947142 scopus 로고    scopus 로고
    • Determination of optimum classifier and feature subset in hyperspectral images based on ant colony system
    • Dec.
    • F. Samadzadegan, H. Hasani, and T. Schenk, "Determination of optimum classifier and feature subset in hyperspectral images based on ant colony system," Photogramm. Eng. Remote Sens., vol. 78, no. 12, pp. 1261-1273, Dec. 2012.
    • (2012) Photogramm. Eng. Remote Sens. , vol.78 , Issue.12 , pp. 1261-1273
    • Samadzadegan, F.1    Hasani, H.2    Schenk, T.3
  • 34
    • 21444437262 scopus 로고    scopus 로고
    • Support vector machines for classification of multi-and hyperspectral data
    • P. K. Varshney and M. K. Arora, Eds., 3rd ed., Berlin, Germany: Springer
    • P. Watanachaturaporn and M. K. Arora, "Support vector machines for classification of multi-and hyperspectral data," in Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data, P. K. Varshney and M. K. Arora, Eds., 3rd ed., Berlin, Germany: Springer, 2004, pp. 237-255.
    • (2004) Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data , pp. 237-255
    • Watanachaturaporn, P.1    Arora, M.K.2
  • 36
    • 77958017904 scopus 로고    scopus 로고
    • SVM-and MRF-based method for accurate classification of hyperspectral images
    • Oct.
    • Y. Tarabalka,M. Fauvel, J. Chanussot, and J. A. Benediktsson, "SVM-and MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4
  • 37
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 38
    • 84956981949 scopus 로고    scopus 로고
    • Performance degradation in boosting
    • Multiple Classifier Systems
    • J. Wickramaratna, S. B. Holden, and B. F. Buxton, "Performance degradation in boosting," in Multiple Classifier Syst.: 2nd Int. Workshop (MCS 2001), Cambridge, U.K., 2001, pp. 11-21. (Pubitemid 33303209)
    • (2001) Lecture Notes In Computer Science , Issue.2096 , pp. 11-21
    • Wickramaratna, J.1    Holden, S.2    Buxton, B.3
  • 39
    • 26944501740 scopus 로고    scopus 로고
    • Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
    • Dec.
    • G. Valentini and T. G. Dietterich, "Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods," J. Mach. Learn. Res., vol. 5, pp. 725-775, Dec. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 725-775
    • Valentini, G.1    Dietterich, T.G.2
  • 40
    • 10444259853 scopus 로고    scopus 로고
    • Creating diversity in ensembles using artificial data
    • P. Melville and R. J. Mooney, "Creating diversity in ensembles using artificial data," Inform. Fusion, vol. 6, no. 1, pp. 99-111, 2005.
    • (2005) Inform. Fusion , vol.6 , Issue.1 , pp. 99-111
    • Melville, P.1    Mooney, R.J.2
  • 43
    • 0020968740 scopus 로고
    • Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques
    • Jan.
    • R. G. Congalton, R. G. Oderwald, and R. A. Mead, "Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques," Photogramm. Eng. Remote Sens., vol. 49, no. 12, pp. 1671-1678, Jan. 1983.
    • (1983) Photogramm. Eng. Remote Sens. , vol.49 , Issue.12 , pp. 1671-1678
    • Congalton, R.G.1    Oderwald, R.G.2    Mead, R.A.3
  • 44
    • 67349093551 scopus 로고    scopus 로고
    • Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority
    • G. M. Foody, "Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority," Remote Sens. Environ., vol. 113, no. 8, pp. 1658-1663, 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.8 , pp. 1658-1663
    • Foody, G.M.1
  • 45
    • 40349114181 scopus 로고    scopus 로고
    • Harshness in image classification accuracy assessment
    • Jun.
    • G. M. Foody, "Harshness in image classification accuracy assessment," Int. J. Remote Sens., vol. 29, no. 11, pp. 3137-3158, Jun. 2008.
    • (2008) Int. J. Remote Sens. , vol.29 , Issue.11 , pp. 3137-3158
    • Foody, G.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.