메뉴 건너뛰기




Volumn 8, Issue 4, 2016, Pages 1150-1164

A phylogenomic assessment of ancient polyploidy and genome evolution across the poales

Author keywords

GC content; Grasses; Monocots; Whole genome duplication

Indexed keywords

PLANT RNA; TRANSCRIPTOME;

EID: 85015353177     PISSN: None     EISSN: 17596653     Source Type: Journal    
DOI: 10.1093/gbe/evw060     Document Type: Article
Times cited : (125)

References (103)
  • 1
    • 84890829647 scopus 로고    scopus 로고
    • The Amborella genome and the evolution of flowering plants
    • Amborella Genome Project
    • Amborella Genome Project. 2013. The Amborella genome and the evolution of flowering plants. Science 342:9–1.
    • (2013) Science , vol.342 , pp. 9-11
  • 2
    • 84883254031 scopus 로고    scopus 로고
    • Andrews S. 2010. FastQC. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
    • (2010) FastQC
    • Andrews, S.1
  • 3
    • 84945156729 scopus 로고    scopus 로고
    • On the relative abundance of autopolyploids and allopolyploids
    • Barker MS, et al. 2016. On the relative abundance of autopolyploids and allopolyploids. New Phytol. 210(2):391–398.
    • (2016) New Phytol , vol.210 , Issue.2 , pp. 391-398
    • Barker, M.S.1
  • 4
    • 84955195022 scopus 로고    scopus 로고
    • Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots
    • Barrett CF, et al. 2016. Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytol. 209(2):855–870.
    • (2016) New Phytol , vol.209 , Issue.2 , pp. 855-870
    • Barrett, C.F.1
  • 5
    • 0035109466 scopus 로고    scopus 로고
    • A cytosolic ADP-glucose pyro-phosphorylase is a feature of graminaceous endosperms, but not of other starch-storing organs
    • Beckles DM, Smith AM, ap Rees T. 2001. A cytosolic ADP-glucose pyro-phosphorylase is a feature of graminaceous endosperms, but not of other starch-storing organs. Plant Physiol. 125:818–827.
    • (2001) Plant Physiol , vol.125 , pp. 818-827
    • Beckles, D.M.1    Smith, A.M.2    Ap Rees, T.3
  • 7
    • 3142700743 scopus 로고    scopus 로고
    • Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes
    • Blanc G, Wolfe KH. 2004. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678.
    • (2004) Plant Cell , vol.16 , pp. 1667-1678
    • Blanc, G.1    Wolfe, K.H.2
  • 8
    • 0037468758 scopus 로고    scopus 로고
    • Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events
    • Bowers JE, Chapman BA, Rong J, Paterson AH. 2003. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438.
    • (2003) Nature , vol.422 , pp. 433-438
    • Bowers, J.E.1    Chapman, B.A.2    Rong, J.3    Paterson, A.H.4
  • 9
    • 85027923022 scopus 로고    scopus 로고
    • The genome sequence of the orchid Phalaenopsis equestris
    • Cai J, et al. 2014. The genome sequence of the orchid Phalaenopsis equestris. Nat Genet. 47:65–72.
    • (2014) Nat Genet , vol.47 , pp. 65-72
    • Cai, J.1
  • 10
    • 84922339729 scopus 로고    scopus 로고
    • Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes
    • Cannon SB, et al. 2015. Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol Biol Evol. 32:193–210.
    • (2015) Mol Biol Evol , vol.32 , pp. 193-210
    • Cannon, S.B.1
  • 11
    • 0034117544 scopus 로고    scopus 로고
    • Two classes of genes in plants
    • Carels N, Bernardi G. 2000. Two classes of genes in plants. Genetics 154:1819–1825.
    • (2000) Genetics , vol.154 , pp. 1819-1825
    • Carels, N.1    Bernardi, G.2
  • 12
    • 0031984373 scopus 로고    scopus 로고
    • Compositional properties of homologous coding sequences from plants
    • Carels N, Hatey P, Jabbari K, Bernardi G. 1998. Compositional properties of homologous coding sequences from plants. J Mol Evol. 46:45–53.
    • (1998) J Mol Evol , vol.46 , pp. 45-53
    • Carels, N.1    Hatey, P.2    Jabbari, K.3    Bernardi, G.4
  • 13
    • 3042615882 scopus 로고    scopus 로고
    • Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs
    • Chevreux B, et al. 2004. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 14:1147–1159.
    • (2004) Genome Res , vol.14 , pp. 1147-1159
    • Chevreux, B.1
  • 14
    • 84928226061 scopus 로고    scopus 로고
    • The bimodal distribution of genic GC content is ancestral to monocot species
    • Clément Y, Fustier M-A, Nabholz B, Glémin S. 2015. The bimodal distribution of genic GC content is ancestral to monocot species. Genome Biol Evol. 7:336–348.
    • (2015) Genome Biol Evol , vol.7 , pp. 336-348
    • Clément, Y.1    Fustier, M.-A.2    Nabholz, B.3    Glémin, S.4
  • 15
    • 67649324673 scopus 로고    scopus 로고
    • The evolution of the starch biosynthetic pathway in cereals and other grasses
    • Comparot-Moss S, Denyer K. 2009. The evolution of the starch biosynthetic pathway in cereals and other grasses. J Exp Bot. 60:2481–2492.
    • (2009) J Exp Bot , vol.60 , pp. 2481-2492
    • Comparot-Moss, S.1    Denyer, K.2
  • 16
    • 33744822985 scopus 로고    scopus 로고
    • Widespread genome duplications throughout the history of flowering plants
    • Cui L, et al. 2006. Widespread genome duplications throughout the history of flowering plants. Genome Res. 16:738–749.
    • (2006) Genome Res , vol.16 , pp. 738-749
    • Cui, L.1
  • 17
    • 84864696893 scopus 로고    scopus 로고
    • The banana (Musa acuminata) genome and the evolution of monocotyledonous plants
    • D’Hont A, et al. 2012. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217.
    • (2012) Nature , vol.488 , pp. 213-217
    • D’Hont, A.1
  • 18
    • 84859890901 scopus 로고    scopus 로고
    • Redundancy and rewiring of genetic networks following genome-wide duplication events
    • De Smet R, Van de Peer Y. 2012. Redundancy and rewiring of genetic networks following genome-wide duplication events. Curr Opin Plant Biol. 15:168–176.
    • (2012) Curr Opin Plant Biol , vol.15 , pp. 168-176
    • De Smet, R.1    Van De Peer, Y.2
  • 19
    • 57749100022 scopus 로고    scopus 로고
    • Evolutionary genetics of genome merger and doubling in plants
    • Doyle JJ, et al. 2008. Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet. 42:443–461.
    • (2008) Annu Rev Genet , vol.42 , pp. 443-461
    • Doyle, J.J.1
  • 20
    • 77950191132 scopus 로고    scopus 로고
    • Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels
    • Duarte JM, et al. 2010. Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels. BMC Evol Biol. 10:61.
    • (2010) BMC Evol Biol , vol.10 , pp. 61
    • Duarte, J.M.1
  • 21
    • 70350236484 scopus 로고    scopus 로고
    • Biased gene conversion and the evolution of mammalian genomic landscapes
    • Duret L, Galtier N. 2009. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet. 10:285–311.
    • (2009) Annu Rev Genomics Hum Genet , vol.10 , pp. 285-311
    • Duret, L.1    Galtier, N.2
  • 22
    • 3042666256 scopus 로고    scopus 로고
    • Muscle: Multiple sequence alignment with high accuracy and high throughput
    • Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792–1797.
    • (2004) Nucleic Acids Res , vol.32 , pp. 1792-1797
    • Edgar, R.C.1
  • 23
    • 84936817684 scopus 로고    scopus 로고
    • The butterfly plant arms-race escalated by gene and genome duplications
    • Edger PP, et al. 2015. The butterfly plant arms-race escalated by gene and genome duplications. Proc Natl Acad Sci U S A. 112:8362–8366.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , pp. 8362-8366
    • Edger, P.P.1
  • 24
    • 80052138512 scopus 로고    scopus 로고
    • GC-biased gene conversion impacts ribosomal DNA evolution in vertebrates, angiosperms, and other eu-karyotes
    • Escobar JS, Glémin S, Galtier N. 2011. GC-biased gene conversion impacts ribosomal DNA evolution in vertebrates, angiosperms, and other eu-karyotes. Mol Biol Evol. 28:2561–2575.
    • (2011) Mol Biol Evol , vol.28 , pp. 2561-2575
    • Escobar, J.S.1    Glémin, S.2    Galtier, N.3
  • 25
    • 84908046982 scopus 로고    scopus 로고
    • Allopolyploidy, diversification, and the Miocene grassland expansion
    • Estep MC, et al. 2014. Allopolyploidy, diversification, and the Miocene grassland expansion. Proc Natl Acad Sci U S A. 111:15149–15154.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 15149-15154
    • Estep, M.C.1
  • 27
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley C, Raftery AE. 2002. Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc. 97:611–631.
    • (2002) J Am Stat Assoc , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 29
    • 67651039811 scopus 로고    scopus 로고
    • Bias in plant gene content following different sorts of duplication: Tandem, whole-genome, segmental, or by transposition
    • Freeling M. 2009. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol. 60:433–453.
    • (2009) Annu Rev Plant Biol , vol.60 , pp. 433-453
    • Freeling, M.1
  • 30
    • 78650470488 scopus 로고    scopus 로고
    • Assembling the tree of the monocotyledons: Plastome sequence phylogeny and evolution of poales
    • Givnish TJ, et al. 2010. Assembling the tree of the monocotyledons: plastome sequence phylogeny and evolution of poales. Ann Missouri Bot Gard. 97:584–616.
    • (2010) Ann Missouri Bot Gard , vol.97 , pp. 584-616
    • Givnish, T.J.1
  • 31
    • 84863337850 scopus 로고    scopus 로고
    • Phylogeny, adaptive radiation, and historical bio-geography in Bromeliaceae: Insights from an eight-locus plastid phylogeny
    • Givnish TJ, et al. 2011. Phylogeny, adaptive radiation, and historical bio-geography in Bromeliaceae: insights from an eight-locus plastid phylogeny. Am J Bot. 98:872–895.
    • (2011) Am J Bot , vol.98 , pp. 872-895
    • Givnish, T.J.1
  • 32
    • 84903440684 scopus 로고    scopus 로고
    • GC content evolution in coding regions of angiosperm genomes: A unifying hypothesis
    • Glémin S, Clément Y, David J, Ressayre A. 2014. GC content evolution in coding regions of angiosperm genomes: a unifying hypothesis. Trends Genet. 30:263–270.
    • (2014) Trends Genet , vol.30 , pp. 263-270
    • Glémin, S.1    Clément, Y.2    David, J.3    Ressayre, A.4
  • 33
    • 79960264362 scopus 로고    scopus 로고
    • Full-length transcriptome assembly from RNA-Seq data without a reference genome
    • Grabherr MG, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 29:644–652.
    • (2011) Nat Biotechnol , vol.29 , pp. 644-652
    • Grabherr, M.G.1
  • 34
    • 0034800508 scopus 로고    scopus 로고
    • Phylogeny and subfamilial classification of the grasses (Poaceae)
    • Grass Phylogeny Working Group. 2001. Phylogeny and subfamilial classification of the grasses (Poaceae). Ann Missouri Bot Gard. 88:373–457.
    • (2001) Ann Missouri Bot Gard , vol.88 , pp. 373-457
  • 35
    • 84155164309 scopus 로고    scopus 로고
    • New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins
    • Grass Phylogeny Working Group II. 2012. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol. 193:304–312.
    • (2012) New Phytol , vol.193 , pp. 304-312
  • 36
    • 79955630390 scopus 로고    scopus 로고
    • Ancestral polyploidy in seed plants and angiosperms
    • Jiao Y, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100.
    • (2011) Nature , vol.473 , pp. 97-100
    • Jiao, Y.1
  • 37
    • 84862777561 scopus 로고    scopus 로고
    • A genome triplication associated with early diversification of the core eudicots
    • Jiao Y, et al. 2012. A genome triplication associated with early diversification of the core eudicots. Genome Biol. 13:R3.
    • (2012) Genome Biol , vol.13 , pp. R3
    • Jiao, Y.1
  • 38
    • 84907351551 scopus 로고    scopus 로고
    • Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots
    • Jiao Y, Li J, Tang H, Paterson AH. 2014. Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell 26:2792–2802.
    • (2014) Plant Cell , vol.26 , pp. 2792-2802
    • Jiao, Y.1    Li, J.2    Tang, H.3    Paterson, A.H.4
  • 39
    • 10744220149 scopus 로고    scopus 로고
    • A unique set of 11,008 onion expressed sequence tags reveals expressed sequence and genomic differences between the monocot orders Asparagales and Poales
    • Kuhl JC, et al. 2004. A unique set of 11,008 onion expressed sequence tags reveals expressed sequence and genomic differences between the monocot orders Asparagales and Poales. Plant Cell 16:114–125.
    • (2004) Plant Cell , vol.16 , pp. 114-125
    • Kuhl, J.C.1
  • 40
    • 33645802408 scopus 로고    scopus 로고
    • Comparative genomic analyses in Asparagus
    • Kuhl JC, et al. 2005. Comparative genomic analyses in Asparagus. Genome 48:1052–1060.
    • (2005) Genome , vol.48 , pp. 1052-1060
    • Kuhl, J.C.1
  • 41
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    • Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10:R25.
    • (2009) Genome Biol , vol.10 , pp. R25
    • Langmead, B.1    Trapnell, C.2    Pop, M.3    Salzberg, S.L.4
  • 42
    • 24744449757 scopus 로고    scopus 로고
    • Identifying the basal angiosperm node in chloroplast genome phylogenies: Sampling one’s way out of the Felsenstein zone
    • Leebens-Mack J, et al. 2005. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein zone. Mol Biol Evol. 22:1948–1963.
    • (2005) Mol Biol Evol , vol.22 , pp. 1948-1963
    • Leebens-Mack, J.1
  • 43
    • 0021057690 scopus 로고
    • Polyploidy and novelty in flowering plants
    • Levin DA. 1983. Polyploidy and novelty in flowering plants. Am Nat. 122:1–25.
    • (1983) Am Nat , vol.122 , pp. 1-25
    • Levin, D.A.1
  • 45
    • 79961123152 scopus 로고    scopus 로고
    • RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome
    • Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323.
    • (2011) BMC Bioinformatics , vol.12 , pp. 323
    • Li, B.1    Dewey, C.N.2
  • 46
    • 84866899517 scopus 로고    scopus 로고
    • Divergent evolutionary pattern of starch biosynthetic pathway genes in grasses and dicots
    • Li C, Li Q-G, Dunwell JM, Zhang Y-M. 2012. Divergent evolutionary pattern of starch biosynthetic pathway genes in grasses and dicots. Mol Biol Evol. 29:3227–3236.
    • (2012) Mol Biol Evol , vol.29 , pp. 3227-3236
    • Li, C.1    Li, Q.-G.2    Dunwell, J.M.3    Zhang, Y.-M.4
  • 47
    • 0141519279 scopus 로고    scopus 로고
    • OrthoMCl: Identification of ortholog groups for eukaryotic genomes
    • Li L, Stoeckert CJ, Roos DS. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13:2178–2189.
    • (2003) Genome Res , vol.13 , pp. 2178-2189
    • Li, L.1    Stoeckert, C.J.2    Roos, D.S.3
  • 49
    • 0242381269 scopus 로고    scopus 로고
    • Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: Implications for the evolution of floral development
    • Litt A, Irish VF. 2003. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165:821–833.
    • (2003) Genetics , vol.165 , pp. 821-833
    • Litt, A.1    Irish, V.F.2
  • 50
    • 0037270015 scopus 로고    scopus 로고
    • The evolutionary demography of duplicate genes
    • Lynch M, Conery JS. 2003. The evolutionary demography of duplicate genes. J Struct Funct Genomics. 3:35–44.
    • (2003) J Struct Funct Genomics , vol.3 , pp. 35-44
    • Lynch, M.1    Conery, J.S.2
  • 51
    • 0031504952 scopus 로고    scopus 로고
    • Gene trees in species trees
    • Maddison WP. 1997. Gene trees in species trees. Syst Biol. 46:523–536.
    • (1997) Syst Biol , vol.46 , pp. 523-536
    • Maddison, W.P.1
  • 52
    • 17244368487 scopus 로고    scopus 로고
    • Modeling gene and genome duplications in eukary-otes
    • Maere S, et al. 2005. Modeling gene and genome duplications in eukary-otes. Proc Natl Acad Sci U S A. 102:5454–5459.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 5454-5459
    • Maere, S.1
  • 53
    • 60249100615 scopus 로고    scopus 로고
    • Angiosperm diversification through time
    • Magallón S, Castillo A. 2009. Angiosperm diversification through time. Am J Bot. 96:349–365.
    • (2009) Am J Bot , vol.96 , pp. 349-365
    • Magallón, S.1    Castillo, A.2
  • 54
  • 55
    • 33947219934 scopus 로고    scopus 로고
    • Hybrid speciation
    • Mallet J. 2007. Hybrid speciation. Nature 446:279–283.
    • (2007) Nature , vol.446 , pp. 279-283
    • Mallet, J.1
  • 56
    • 80255127234 scopus 로고    scopus 로고
    • Cutadapt removes adapter sequences from high-throughput sequencing reads
    • Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17:10–12.
    • (2011) EMBnet J , vol.17 , pp. 10-12
    • Martin, M.1
  • 57
    • 80052468970 scopus 로고    scopus 로고
    • Recently formed polyploid plants diversify at lower rates
    • Mayrose I, et al. 2011. Recently formed polyploid plants diversify at lower rates. Science 333:1257.
    • (2011) Science , vol.333 , pp. 1257
    • Mayrose, I.1
  • 58
    • 84863337847 scopus 로고    scopus 로고
    • Phylogenomic analysis of transcriptome data elucidates co-occurrence of a paleopolyploid event and the origin of bimodal karyotypes in Agavoideae (Asparagaceae)
    • McKain MR, et al. 2012. Phylogenomic analysis of transcriptome data elucidates co-occurrence of a paleopolyploid event and the origin of bimodal karyotypes in Agavoideae (Asparagaceae). Am J Bot. 99:397–406.
    • (2012) Am J Bot , vol.99 , pp. 397-406
    • McKain, M.R.1
  • 59
    • 84948951159 scopus 로고    scopus 로고
    • The pineapple genome and the evolution of CAM photosynthesis
    • Ming R, et al. 2015. The pineapple genome and the evolution of CAM photosynthesis. Nat Genet. 47:1435–1442
    • (2015) Nat Genet , vol.47 , pp. 1435-1442
    • Ming, R.1
  • 60
    • 84907019380 scopus 로고    scopus 로고
    • Astral: Genome-scale coalescent-based species tree estimation
    • Mirarab S, et al. 2014. ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30:i541–i548.
    • (2014) Bioinformatics , vol.30 , pp. i541-i548
    • Mirarab, S.1
  • 61
    • 80052142011 scopus 로고    scopus 로고
    • GC-biased gene conversion and selection affect GC content in the Oryza genus (rice)
    • Muyle A, Serres-Giardi L, Ressayre A, Escobar J, Glémin S. 2011. GC-biased gene conversion and selection affect GC content in the Oryza genus (rice). Mol Biol Evol. 28:2695–2706.
    • (2011) Mol Biol Evol , vol.28 , pp. 2695-2706
    • Muyle, A.1    Serres-Giardi, L.2    Ressayre, A.3    Escobar, J.4    Glémin, S.5
  • 63
    • 3042836334 scopus 로고    scopus 로고
    • Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics
    • Paterson AH, Bowers JE, Chapman BA. 2004. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A. 101:9903–9908.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 9903-9908
    • Paterson, A.H.1    Bowers, J.E.2    Chapman, B.A.3
  • 64
    • 58449137410 scopus 로고    scopus 로고
    • The Sorghum bicolor genome and the diversification of grasses
    • Paterson AH, et al. 2009. The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556.
    • (2009) Nature , vol.457 , pp. 551-556
    • Paterson, A.H.1
  • 65
    • 84871428041 scopus 로고    scopus 로고
    • Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres
    • Paterson AH, et al. 2012. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427.
    • (2012) Nature , vol.492 , pp. 423-427
    • Paterson, A.H.1
  • 67
    • 69249216559 scopus 로고    scopus 로고
    • MADS-box gene expression and implications for developmental origins of the grass spikelet
    • Preston JC, Christensen A, Malcomber ST, Kellogg EA. 2009. MADS-box gene expression and implications for developmental origins of the grass spikelet. Am J Bot. 96:1419–1429.
    • (2009) Am J Bot , vol.96 , pp. 1419-1429
    • Preston, J.C.1    Christensen, A.2    Malcomber, S.T.3    Kellogg, E.A.4
  • 68
    • 33748884876 scopus 로고    scopus 로고
    • Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae)
    • Preston JC, Kellogg EA. 2006. Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). Genetics 174:421–437.
    • (2006) Genetics , vol.174 , pp. 421-437
    • Preston, J.C.1    Kellogg, E.A.2
  • 69
    • 0032422925 scopus 로고    scopus 로고
    • Pathyways, mechanisms, and rates of polyploid formation in flowering plants
    • Ramsey J, Schemske DW. 1998. Pathyways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst. 29:467–501.
    • (1998) Annu Rev Ecol Syst , vol.29 , pp. 467-501
    • Ramsey, J.1    Schemske, D.W.2
  • 70
    • 23944499773 scopus 로고    scopus 로고
    • Evolution of reproductive structures in grasses (Poaceae) inferred by sister-group comparison with their putative closest living relatives, Ecdeiocoleaceae
    • Rudall P, Stuppy W. 2005. Evolution of reproductive structures in grasses (Poaceae) inferred by sister-group comparison with their putative closest living relatives, Ecdeiocoleaceae. Am J Bot. 92:1432–1443.
    • (2005) Am J Bot , vol.92 , pp. 1432-1443
    • Rudall, P.1    Stuppy, W.2
  • 71
    • 54349096747 scopus 로고    scopus 로고
    • Reproductive morphology of the early-divergent grass Streptochaeta and its bearing on the homologies of the grass spikelet
    • Reproductive morphology of the early-divergent grass Streptochaeta and its bearing on the homologies of the grass spikelet. Plant Syst Evol. 275:245–255.
    • Plant Syst Evol , vol.275 , pp. 245-255
  • 72
    • 84867897122 scopus 로고    scopus 로고
    • Morphological evolution in the graminid clade: Comparative floral anatomy of the grass relatives Flagellariaceae and Joinvilleaceae
    • Sajo MG, Rudall PJ. 2012. Morphological evolution in the graminid clade: comparative floral anatomy of the grass relatives Flagellariaceae and Joinvilleaceae. Bot J Linn Soc. 170:393–404.
    • (2012) Bot J Linn Soc , vol.170 , pp. 393-404
    • Sajo, M.G.1    Rudall, P.J.2
  • 73
    • 54349096747 scopus 로고    scopus 로고
    • Reproductive morphology of the early-divergent grass Streptochaeta and its bearing on the homologies of the grass spikelet
    • Sajo M, Longhi-Wagner H, Rudall P. 2008. Reproductive morphology of the early-divergent grass Streptochaeta and its bearing on the homologies of the grass spikelet. Plant Syst Evol. 275:245–255.
    • (2008) Plant Syst Evol , vol.275 , pp. 245-255
    • Sajo, M.1    Longhi-Wagner, H.2    Rudall, P.3
  • 74
    • 2442712340 scopus 로고    scopus 로고
    • Mining EST databases to resolve evolutionary events in major crop species
    • Schlueter JA, et al. 2004. Mining EST databases to resolve evolutionary events in major crop species. Genome 47:868–876.
    • (2004) Genome , vol.47 , pp. 868-876
    • Schlueter, J.A.1
  • 75
    • 84862299158 scopus 로고    scopus 로고
    • Patterns and evolution of nucleotide landscapes in seed plants
    • Serres-Giardi L, Belkhir K, David J, Glemin S. 2012. Patterns and evolution of nucleotide landscapes in seed plants. Plant Cell 24:1379–1397.
    • (2012) Plant Cell , vol.24 , pp. 1379-1397
    • Serres-Giardi, L.1    Belkhir, K.2    David, J.3    Glemin, S.4
  • 76
    • 33748102415 scopus 로고    scopus 로고
    • Nucleotide substitution pattern in rice paralogues: Implication for negative correlation between the synonymous substitution rate and codon usage bias
    • Shi X, et al. 2006. Nucleotide substitution pattern in rice paralogues: implication for negative correlation between the synonymous substitution rate and codon usage bias. Gene 376:199–206.
    • (2006) Gene , vol.376 , pp. 199-206
    • Shi, X.1
  • 77
    • 84907584860 scopus 로고    scopus 로고
    • Ecological and evolutionary significance of genomic GC content diversity in monocots
    • Smarda P, et al. 2014. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc Natl Acad Sci U S A. 111:E4096–E4102.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. E4096-E4102
    • Smarda, P.1
  • 78
    • 60249085527 scopus 로고    scopus 로고
    • Polyploidy and angiosperm diversification
    • Soltis DE, et al. 2009. Polyploidy and angiosperm diversification. Am J Bot. 96:336–348.
    • (2009) Am J Bot , vol.96 , pp. 336-348
    • Soltis, D.E.1
  • 79
    • 84899911988 scopus 로고    scopus 로고
    • Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al
    • 2011
    • Soltis DE, et al. 2014. Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. (2011). New Phytol. 202:1105–1117.
    • (2014) New Phytol , vol.202 , pp. 1105-1117
    • Soltis, D.E.1
  • 80
    • 84930241742 scopus 로고    scopus 로고
    • A worldwide phylogenetic classification of the Poaceae (Gramineae)
    • Soreng RJ, et al. 2015. A worldwide phylogenetic classification of the Poaceae (Gramineae). J Syst Evol. 53:117–137.
    • (2015) J Syst Evol , vol.53 , pp. 117-137
    • Soreng, R.J.1
  • 81
    • 33750403801 scopus 로고    scopus 로고
    • RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models
    • Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Nucleic Acids Res. 22:2688–2690.
    • (2006) Nucleic Acids Res , vol.22 , pp. 2688-2690
    • Stamatakis, A.1
  • 82
    • 33747847779 scopus 로고    scopus 로고
    • PAL2Nal: Robust conversion of protein sequence alignments into the corresponding codon alignments
    • Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34:W609–W612.
    • (2006) Nucleic Acids Res , vol.34 , pp. W609-W612
    • Suyama, M.1    Torrents, D.2    Bork, P.3
  • 83
    • 76249106402 scopus 로고    scopus 로고
    • Angiosperm genome comparisons reveal early polyploidy in the monocot lineage
    • Tang H, Bowers JE, Wang X, Paterson AH. 2010. Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Natl Acad Sci U S A. 107:472–477.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 472-477
    • Tang, H.1    Bowers, J.E.2    Wang, X.3    Paterson, A.H.4
  • 84
    • 42549120705 scopus 로고    scopus 로고
    • Synteny and collinearity in plant genomes
    • Tang H, et al. 2007. Synteny and collinearity in plant genomes. Science 320:486–488.
    • (2007) Science , vol.320 , pp. 486-488
    • Tang, H.1
  • 85
    • 84859564587 scopus 로고    scopus 로고
    • Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy
    • Tang H, et al. 2012. Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy. Genetics 190:1563–1574.
    • (2012) Genetics , vol.190 , pp. 1563-1574
    • Tang, H.1
  • 87
    • 84891655850 scopus 로고    scopus 로고
    • Cross-species analysis of genic GC3 content and DNA methylation patterns
    • Tatarinova T, Elhaik E, Pellegrini M. 2013. Cross-species analysis of genic GC3 content and DNA methylation patterns. Genome Biol Evol. 5:1443–1456.
    • (2013) Genome Biol Evol , vol.5 , pp. 1443-1456
    • Tatarinova, T.1    Elhaik, E.2    Pellegrini, M.3
  • 88
    • 10944230777 scopus 로고    scopus 로고
    • Duplication and divergence: The evolution of new genes and old ideas
    • Taylor JS, Raes J. 2004. Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet. 38:615–643.
    • (2004) Annu Rev Genet , vol.38 , pp. 615-643
    • Taylor, J.S.1    Raes, J.2
  • 89
    • 33748760611 scopus 로고    scopus 로고
    • The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)
    • Tuskan Ga, et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604.
    • (2006) Science , vol.313 , pp. 1596-1604
    • Ga, T.1
  • 91
    • 84905647470 scopus 로고    scopus 로고
    • Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary
    • Vanneste K, Baele G, Maere S, Van De Peer Y. 2014. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Res. 24:1334–1347.
    • (2014) Genome Res , vol.24 , pp. 1334-1347
    • Vanneste, K.1    Baele, G.2    Maere, S.3    Van De Peer, Y.4
  • 92
    • 84871822072 scopus 로고    scopus 로고
    • Inference of genome duplications from age distributions revisited
    • Vanneste K, Van de Peer Y, Maere S. 2012. Inference of genome duplications from age distributions revisited. Mol Biol Evol. 30:177–190.
    • (2012) Mol Biol Evol , vol.30 , pp. 177-190
    • Vanneste, K.1    Van De Peer, Y.2    Maere, S.3
  • 93
    • 38549087500 scopus 로고    scopus 로고
    • Planttribes: A gene and gene family resource for comparative genomics in plants
    • Wall PK, et al. 2008. PlantTribes: a gene and gene family resource for comparative genomics in plants. Nucleic Acids Res. 36:D970–D976.
    • (2008) Nucleic Acids Res , vol.36 , pp. D970-D976
    • Wall, P.K.1
  • 94
    • 1242284665 scopus 로고    scopus 로고
    • Mutational bias affects protein evolution in flowering plants
    • Wang H, Singer GaC, Hickey DA. 2004. Mutational bias affects protein evolution in flowering plants. Mol Biol Evol. 21:90–96.
    • (2004) Mol Biol Evol , vol.21 , pp. 90-96
    • Wang, H.1    Singer, Ga.C.2    Hickey, D.A.3
  • 95
    • 14244250895 scopus 로고    scopus 로고
    • Duplication and DNA segmental loss in the rice genome: Implications for diploidization
    • Wang X, Shi X, Hao B, Ge S, Luo J. 2005. Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol. 165:937–946.
    • (2005) New Phytol , vol.165 , pp. 937-946
    • Wang, X.1    Shi, X.2    Hao, B.3    Ge, S.4    Luo, J.5
  • 96
    • 0036078076 scopus 로고    scopus 로고
    • Compositional gradients in Gramineae genes
    • Wong GK-S, et al. 2002. Compositional gradients in Gramineae genes. Genome Res. 12:851–856.
    • (2002) Genome Res , vol.12 , pp. 851-856
    • Wong, G.K.-S.1
  • 97
    • 44649166423 scopus 로고    scopus 로고
    • The preferential retention of starch synthesis genes reveals the impact of whole-genome duplication on grass evolution
    • Wu Y, Zhu Z, Ma L, Chen M. 2008. The preferential retention of starch synthesis genes reveals the impact of whole-genome duplication on grass evolution. Mol Biol Evol. 25:1003–1006.
    • (2008) Mol Biol Evol , vol.25 , pp. 1003-1006
    • Wu, Y.1    Zhu, Z.2    Ma, L.3    Chen, M.4
  • 98
    • 84965099240 scopus 로고    scopus 로고
    • Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing
    • Yang Y, Moore MJ, Brockington SF, Soltis DE, Wong GK. 2015. Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. Mol Biol Evol. 32:2001–2014.
    • (2015) Mol Biol Evol , vol.32 , pp. 2001-2014
    • Yang, Y.1    Moore, M.J.2    Brockington, S.F.3    Soltis, D.E.4    Wong, G.K.5
  • 99
    • 34547803197 scopus 로고    scopus 로고
    • PAML 4: Phylogenetic analysis by maximum likelihood
    • Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24:1586–1591.
    • (2007) Mol Biol Evol , vol.24 , pp. 1586-1591
    • Yang, Z.1
  • 101
    • 84872611513 scopus 로고    scopus 로고
    • Homoeolog expression bias and expression level dominance in allopolyploid cotton
    • Yoo M-J, Szadkowski E, Wendel JF. 2013. Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 110:171–180.
    • (2013) Heredity , vol.110 , pp. 171-180
    • Yoo, M.-J.1    Szadkowski, E.2    Wendel, J.F.3
  • 102
    • 20144366003 scopus 로고    scopus 로고
    • The genomes of Oryza sativa: A history of duplications
    • Yu J, et al. 2005. The genomes of Oryza sativa: a history of duplications. PLoS Biol. 3:1003–1006.
    • (2005) PLoS Biol , vol.3 , pp. 1003-1006
    • Yu, J.1
  • 103
    • 0036699481 scopus 로고    scopus 로고
    • Increased taxon sampling greatly reduces phylogenetic error
    • Zwickl DJ, Hillis DM. 2002. Increased taxon sampling greatly reduces phylogenetic error. Syst Biol. 51:588–598.
    • (2002) Syst Biol , vol.51 , pp. 588-598
    • Zwickl, D.J.1    Hillis, D.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.