메뉴 건너뛰기




Volumn 21, Issue 2, 2014, Pages 315-325

From vital signs to clinical outcomes for patients with sepsis: A machine learning basis for a clinical decision support system

Author keywords

[No Author keywords available]

Indexed keywords

CLINICAL DECISION SUPPORT; ELECTRONIC HEALTH RECORDS; LACTATE LEVEL PREDICTION; MACHINE LEARNING; MORTALITY PREDICTION; SEPSIS;

EID: 84894101089     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1136/amiajnl-2013-001815     Document Type: Article
Times cited : (147)

References (54)
  • 2
    • 0034958947 scopus 로고    scopus 로고
    • Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care
    • Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001;29:1303-10.
    • (2001) Crit Care Med , vol.29 , pp. 1303-1310
    • Angus, D.C.1    Linde-Zwirble, W.T.2    Lidicker, J.3
  • 3
    • 0037396875 scopus 로고    scopus 로고
    • 2001 sccm/esicm/accp/ats/sis international sepsis definitions conference
    • Levy MM, Fink MP, Marshall JC, et al. 2001 sccm/esicm/accp/ats/sis international sepsis definitions conference. Intensive Care Med 2003;29:530-8.
    • (2003) Intensive Care Med , vol.29 , pp. 530-538
    • Levy, M.M.1    Fink, M.P.2    Marshall, J.C.3
  • 4
    • 84873714375 scopus 로고    scopus 로고
    • Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012
    • Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 2013;39:165-228.
    • (2013) Intensive Care Med , vol.39 , pp. 165-228
    • Dellinger, R.P.1    Levy, M.M.2    Rhodes, A.3
  • 5
    • 33744527833 scopus 로고    scopus 로고
    • Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock
    • Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006;34:1589-96.
    • (2006) Crit Care Med , vol.34 , pp. 1589-1596
    • Kumar, A.1    Roberts, D.2    Wood, K.E.3
  • 6
    • 0035829842 scopus 로고    scopus 로고
    • Early goal-directed therapy in the treatment of severe sepsis and septic shock
    • Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345:1368-77.
    • (2001) N Engl J Med , vol.345 , pp. 1368-1377
    • Rivers, E.1    Nguyen, B.2    Havstad, S.3
  • 7
    • 77954959272 scopus 로고    scopus 로고
    • A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study
    • Kumar A, Safdar N, Kethireddy S, et al. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med 2010;38:1651-64.
    • (2010) Crit Care Med , vol.38 , pp. 1651-1664
    • Kumar, A.1    Safdar, N.2    Kethireddy, S.3
  • 8
    • 77949269473 scopus 로고    scopus 로고
    • Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the intensive care unit
    • Peelen L, de Keizer NF, de Jonge E, et al. Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the intensive care unit. J Biomed Inform 2010;43:273-86.
    • (2010) J Biomed Inform , vol.43 , pp. 273-286
    • Peelen, L.1    de Keizer, N.F.2    de Jonge, E.3
  • 9
    • 0030015661 scopus 로고    scopus 로고
    • The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure
    • Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med 1996;22:707-10.
    • (1996) Intensive Care Med , vol.22 , pp. 707-710
    • Vincent, J.L.1    Moreno, R.2    Takala, J.3
  • 10
    • 0003384426 scopus 로고    scopus 로고
    • Septic shock diagnosis by neural networks and rule based systems
    • In: Schmitt M, Teodorescu HN, Jain A, et al., eds. New York: Springer
    • Brause R, Hamker F, Paetz J. Septic shock diagnosis by neural networks and rule based systems. In: Schmitt M, Teodorescu HN, Jain A, et al., eds. Computational intelligence techniques in medical diagnosis and prognosis. New York: Springer, 2002:323-56.
    • (2002) Computational intelligence techniques in medical diagnosis and prognosis , pp. 323-356
    • Brause, R.1    Hamker, F.2    Paetz, J.3
  • 11
    • 79952199097 scopus 로고    scopus 로고
    • Prediction of severe sepsis using SVM model
    • In: Arabnia HR. ed. New York: Springer,
    • Wang SL, Wu F, Wang BH. Prediction of severe sepsis using SVM model. In: Arabnia HR. ed. Advances in computational biology. New York: Springer, 2010:75-81.
    • (2010) Advances in computational biology , pp. 75-81
    • Wang, S.L.1    Wu, F.2    Wang, B.H.3
  • 12
    • 77952370942 scopus 로고    scopus 로고
    • Non-invasive classification of severe sepsis and systemic inflammatory response syndrome using a nonlinear support vector machine: a preliminary study
    • Tang CHH, Middleton PM, Savkin AV, et al. Non-invasive classification of severe sepsis and systemic inflammatory response syndrome using a nonlinear support vector machine: a preliminary study. Physiol Meas 2010;31:775-93.
    • (2010) Physiol Meas , vol.31 , pp. 775-793
    • Tang, C.H.H.1    Middleton, P.M.2    Savkin, A.V.3
  • 13
    • 70349367247 scopus 로고    scopus 로고
    • Generalized queries and Bayesian statistical model checking in dynamic Bayesian networks: application to personalized medicine
    • Proceedings of the 8th International Conference on Computational Systems Bioinformatics; August 2009
    • Langmead CJ. Generalized queries and Bayesian statistical model checking in dynamic Bayesian networks: application to personalized medicine. Proceedings of the 8th International Conference on Computational Systems Bioinformatics; August 2009, 201-12.
    • Langmead, C.J.1
  • 14
    • 0034567340 scopus 로고    scopus 로고
    • Predicting ICU mortality: a comparison of stationary and nonstationary temporal models
    • In: Overhage J. ed. proceedings of AMIA Symposium; 2000, Los Angeles, USA:
    • Kayaalp M, Cooper G, Clermont G. Predicting ICU mortality: a comparison of stationary and nonstationary temporal models. In: Overhage J. ed. Converging Information, Technology, and Health Care, proceedings of AMIA Symposium; 2000, Los Angeles, USA: 2000:418-22.
    • (2000) Converging Information, Technology, and Health Care , pp. 418-422
    • Kayaalp, M.1    Cooper, G.2    Clermont, G.3
  • 15
    • 84860523054 scopus 로고    scopus 로고
    • A Bayesian network for early diagnosis of sepsis patients: a basis for a clinical decision support system
    • 2nd IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS); Las Vegas, NV: 23-25
    • Gultepe E, Nguyen H, Albertson T, et al. A Bayesian network for early diagnosis of sepsis patients: a basis for a clinical decision support system. 2nd IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS); Las Vegas, NV: 23-25, 2012, 1-5.
    • (2012) , pp. 1-5
    • Gultepe, E.1    Nguyen, H.2    Albertson, T.3
  • 16
    • 84880811518 scopus 로고    scopus 로고
    • Early detection of sepsis in the emergency department using Dynamic Bayesian Networks
    • Nachimuthu SK, Haug PJ. Early detection of sepsis in the emergency department using Dynamic Bayesian Networks. AMIA Annu Symp Proc 2012;2012:653-62.
    • (2012) AMIA Annu Symp Proc , vol.2012 , pp. 653-662
    • Nachimuthu, S.K.1    Haug, P.J.2
  • 17
    • 0019602768 scopus 로고
    • APACHE-acute physiology and chronic health evaluation: a physiologically based classification system
    • Knaus WA, Zimmerman JE, Wagner DP, et al. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med 1981;9:591-7.
    • (1981) Crit Care Med , vol.9 , pp. 591-597
    • Knaus, W.A.1    Zimmerman, J.E.2    Wagner, D.P.3
  • 18
    • 0021739699 scopus 로고
    • A simplified acute physiology score for ICU patients
    • Le Gall JR, Loirat P, Alperovitch A, et al. A simplified acute physiology score for ICU patients. Crit Care Med 1984;12:975-7.
    • (1984) Crit Care Med , vol.12 , pp. 975-977
    • Le Gall, J.R.1    Loirat, P.2    Alperovitch, A.3
  • 19
    • 33845951922 scopus 로고    scopus 로고
    • Mortality in Emergency Department Sepsis (MEDS) score predicts 1-year mortality
    • Shapiro NI, Howell MD, Talmor D, et al. Mortality in Emergency Department Sepsis (MEDS) score predicts 1-year mortality. Crit Care Med 2007;35:192-8.
    • (2007) Crit Care Med , vol.35 , pp. 192-198
    • Shapiro, N.I.1    Howell, M.D.2    Talmor, D.3
  • 20
    • 0030024779 scopus 로고    scopus 로고
    • Serial blood lactate levels can predict the development of multiple organ failure following septic shock
    • Bakker J, Gris P, Coffernils M, et al. Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg 1996;171:221-6.
    • (1996) Am J Surg , vol.171 , pp. 221-226
    • Bakker, J.1    Gris, P.2    Coffernils, M.3
  • 21
    • 3943052086 scopus 로고    scopus 로고
    • Early lactate clearance is associated with improved outcome in severe sepsis and septic shock
    • Nguyen HB, Rivers EP, Knoblich BP, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 2004;32:1637-42.
    • (2004) Crit Care Med , vol.32 , pp. 1637-1642
    • Nguyen, H.B.1    Rivers, E.P.2    Knoblich, B.P.3
  • 22
    • 54549122745 scopus 로고    scopus 로고
    • The effect of a quantitative resuscitation strategy on mortality in patients with sepsis: a meta-analysis
    • Jones AE, Brown MD, Trzeciak S, et al. The effect of a quantitative resuscitation strategy on mortality in patients with sepsis: a meta-analysis. Crit Care Med 2008;36:2734-9.
    • (2008) Crit Care Med , vol.36 , pp. 2734-2739
    • Jones, A.E.1    Brown, M.D.2    Trzeciak, S.3
  • 23
    • 35448971112 scopus 로고    scopus 로고
    • Occult hypoperfusion and mortality in patients with suspected infection
    • Howell MD, Donnino M, Clardy P, et al. Occult hypoperfusion and mortality in patients with suspected infection. Intensive Care Med 2007;33:1892-9.
    • (2007) Intensive Care Med , vol.33 , pp. 1892-1899
    • Howell, M.D.1    Donnino, M.2    Clardy, P.3
  • 24
    • 34249739559 scopus 로고    scopus 로고
    • Serum lactate as a predictor of mortality in patients with infection
    • Trzeciak S, Dellinger RP, Chansky ME, et al. Serum lactate as a predictor of mortality in patients with infection. Intensive Care Med 2007;33:970-7.
    • (2007) Intensive Care Med , vol.33 , pp. 970-977
    • Trzeciak, S.1    Dellinger, R.P.2    Chansky, M.E.3
  • 25
    • 79952037159 scopus 로고    scopus 로고
    • Serum lactate is a better predictor of short-term mortality when stratified by C-reactive protein in adult emergency department patients hospitalized for a suspected infection
    • Green JP, Berger T, Garg N, et al. Serum lactate is a better predictor of short-term mortality when stratified by C-reactive protein in adult emergency department patients hospitalized for a suspected infection. Ann Emerg Med 2011;57:291-5.
    • (2011) Ann Emerg Med , vol.57 , pp. 291-295
    • Green, J.P.1    Berger, T.2    Garg, N.3
  • 26
    • 77950859539 scopus 로고    scopus 로고
    • The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis
    • Levy MM, Dellinger RP, Townsend SR, et al. The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Intensive Care Med 2010;36:222-31.
    • (2010) Intensive Care Med , vol.36 , pp. 222-231
    • Levy, M.M.1    Dellinger, R.P.2    Townsend, S.R.3
  • 27
    • 74949108856 scopus 로고    scopus 로고
    • Bundled care for septic shock: an analysis of clinical trials
    • Barochia AV, Cui X, Vitberg D, et al. Bundled care for septic shock: an analysis of clinical trials. Crit Care Med 2010;38:668.
    • (2010) Crit Care Med , vol.38 , pp. 668
    • Barochia, A.V.1    Cui, X.2    Vitberg, D.3
  • 29
    • 77955124773 scopus 로고    scopus 로고
    • Learning Bayesian networks with the bnlearn R package
    • Scutari M. Learning Bayesian networks with the bnlearn R package. J Stat Softw 2010;35:1-22.
    • (2010) J Stat Softw , vol.35 , pp. 1-22
    • Scutari, M.1
  • 30
    • 85156253956 scopus 로고    scopus 로고
    • Discovering structure in continuous variables using Bayesian networks
    • Touretzky DS, Mozer MC, Hasselmo ME. eds. MIT Press
    • Hofmann R, Tresp V. Discovering structure in continuous variables using Bayesian networks. In: Touretzky DS, Mozer MC, Hasselmo ME. eds. Advances in neural information processing systems 8. MIT Press, 1996:500-6.
    • (1996) Advances in neural information processing systems , vol.8 , pp. 500-506
    • Hofmann, R.1    Tresp, V.2
  • 31
    • 0002219642 scopus 로고    scopus 로고
    • Data analysis with Bayesian networks: a bootstrap approach
    • Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence
    • Friedman N, Goldszmidt M, Wyner A. Data analysis with Bayesian networks: a bootstrap approach. Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence; 1999, 206-115.
    • (1999) , pp. 206-115
    • Friedman, N.1    Goldszmidt, M.2    Wyner, A.3
  • 33
    • 77951149189 scopus 로고    scopus 로고
    • Feature selection for maximizing the area under the ROC curve
    • IEEE International Conference on Data Mining Workshops; 6 December 2009, Florida, USA
    • Wang R, Tang K. Feature selection for maximizing the area under the ROC curve. IEEE International Conference on Data Mining Workshops; 6 December 2009, Florida, USA: 400-5.
    • Wang, R.1    Tang, K.2
  • 35
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification [Internet]
    • Taipei, Taiwan: National Taiwan University, 2003 [15 April 2010; cited 15 November 2012]
    • Hsu CW, Chang CC, Lin CJ. A practical guide to support vector classification [Internet]. Taipei, Taiwan: National Taiwan University, 2003 [15 April 2010; cited 15 November 2012]. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
    • Hsu, C.W.1    Chang, C.C.2    Lin, C.J.3
  • 37
    • 84894081845 scopus 로고    scopus 로고
    • Mathworks. MATLAB [DVD], Version r2010a, [Computer program]. Available Distributor: The MathWorks Inc. Natick, MA. 2010.
    • Mathworks. MATLAB [DVD], Version r2010a, [Computer program]. Available Distributor: The MathWorks Inc. Natick, MA. 2010.
  • 39
    • 84863203974 scopus 로고    scopus 로고
    • Unsupervised modeling of cell morphology dynamics for time-lapse microscopy
    • Zhong Q, Busetto AG, Fededa JP, et al. Unsupervised modeling of cell morphology dynamics for time-lapse microscopy. Nat Methods 2012;9:711-13.
    • (2012) Nat Methods , vol.9 , pp. 711-713
    • Zhong, Q.1    Busetto, A.G.2    Fededa, J.P.3
  • 41
    • 26944454497 scopus 로고    scopus 로고
    • ROC graphs: notes and practical considerations for researchers
    • Fawcett T. ROC graphs: notes and practical considerations for researchers. Mach Learn 2004;31:1-38.
    • (2004) Mach Learn , vol.31 , pp. 1-38
    • Fawcett, T.1
  • 43
    • 23744484147 scopus 로고    scopus 로고
    • Hemodynamic variables related to outcome in septic shock
    • Varpula M, Tallgren M, Saukkonen K, et al. Hemodynamic variables related to outcome in septic shock. Intensive Care Med 2005;31:1066-71.
    • (2005) Intensive Care Med , vol.31 , pp. 1066-1071
    • Varpula, M.1    Tallgren, M.2    Saukkonen, K.3
  • 44
    • 80054926266 scopus 로고    scopus 로고
    • Severe sepsis mortality prediction with logistic regression over latent factors
    • Ribas VJ, Vellido A, Ruiz-Rodríguez JC, et al. Severe sepsis mortality prediction with logistic regression over latent factors. Expert Syst Appl 2012;39:1937-43.
    • (2012) Expert Syst Appl , vol.39 , pp. 1937-1943
    • Ribas, V.J.1    Vellido, A.2    Ruiz-Rodríguez, J.C.3
  • 45
    • 0029020399 scopus 로고
    • Evaluation of predictive ability of APACHE II system and hospital outcome in Canadian intensive care unit patients
    • Wong DT, Crofts SL, Gomez M, et al. Evaluation of predictive ability of APACHE II system and hospital outcome in Canadian intensive care unit patients. Crit Care Med 1995;23:1177-83.
    • (1995) Crit Care Med , vol.23 , pp. 1177-1183
    • Wong, D.T.1    Crofts, S.L.2    Gomez, M.3
  • 46
    • 33646592518 scopus 로고    scopus 로고
    • Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today's critically ill patients
    • Zimmerman JE, Kramer AA, McNair DS, et al. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today's critically ill patients. Crit Care Med 2006;34:1297-310.
    • (2006) Crit Care Med , vol.34 , pp. 1297-1310
    • Zimmerman, J.E.1    Kramer, A.A.2    McNair, D.S.3
  • 47
    • 43049147109 scopus 로고    scopus 로고
    • Sepsis mortality prediction based on predisposition, infection and response
    • Moreno RP, Metnitz B, Adler L, et al. Sepsis mortality prediction based on predisposition, infection and response. Intensive Care Med 2008;34:496-504.
    • (2008) Intensive Care Med , vol.34 , pp. 496-504
    • Moreno, R.P.1    Metnitz, B.2    Adler, L.3
  • 48
    • 67650457744 scopus 로고    scopus 로고
    • Predisposition, insult/infection, response, and organ dysfunction: a new model for staging severe sepsis
    • Rubulotta F, Marshall JC, Ramsay G, et al. Predisposition, insult/infection, response, and organ dysfunction: a new model for staging severe sepsis. Crit Care Med 2009;37:1329-35.
    • (2009) Crit Care Med , vol.37 , pp. 1329-1335
    • Rubulotta, F.1    Marshall, J.C.2    Ramsay, G.3
  • 49
    • 84870541734 scopus 로고    scopus 로고
    • Variability analysis and the diagnosis, management, and treatment of sepsis
    • Buchan CA, Bravi A, Seely AJE. Variability analysis and the diagnosis, management, and treatment of sepsis. Curr Infect Dis Rep 2012;14:1-10.
    • (2012) Curr Infect Dis Rep , vol.14 , pp. 1-10
    • Buchan, C.A.1    Bravi, A.2    Seely, A.J.E.3
  • 50
    • 31744438366 scopus 로고    scopus 로고
    • The impact of compliance with 6-hour and 24-hour sepsis bundles on hospital mortality in patients with severe sepsis: a prospective observational study
    • Gao F, Melody T, Daniels DF, et al. The impact of compliance with 6-hour and 24-hour sepsis bundles on hospital mortality in patients with severe sepsis: a prospective observational study. Crit Care 2005;9:R764-70.
    • (2005) Crit Care , vol.9
    • Gao, F.1    Melody, T.2    Daniels, D.F.3
  • 51
    • 79952591073 scopus 로고    scopus 로고
    • Surviving the first hours in sepsis: getting the basics right (an intensivist's perspective)
    • Daniels R. Surviving the first hours in sepsis: getting the basics right (an intensivist's perspective). J Antimicrob Chemother 2011;66(Suppl 2):ii11-23.
    • (2011) J Antimicrob Chemother , vol.66 , Issue.SUPPL. 2
    • Daniels, R.1
  • 52
    • 84874071442 scopus 로고    scopus 로고
    • Accuracy of handheld point-of-care fingertip lactate measurement in the Emergency Department
    • Gaieski DF, Drumheller BC, Goyal M, et al. Accuracy of handheld point-of-care fingertip lactate measurement in the Emergency Department. West J Emerg Med 2013;14:58.
    • (2013) West J Emerg Med , vol.14 , pp. 58
    • Gaieski, D.F.1    Drumheller, B.C.2    Goyal, M.3
  • 53
    • 34547135445 scopus 로고    scopus 로고
    • Comparison of lactate values between point-of-care and central laboratory analyzers
    • Karon B, Scott R, Burritt M, et al. Comparison of lactate values between point-of-care and central laboratory analyzers. Am J Clin Pathol 2007; 128:168-71.
    • (2007) Am J Clin Pathol , vol.128 , pp. 168-171
    • Karon, B.1    Scott, R.2    Burritt, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.