메뉴 건너뛰기




Volumn 51, Issue 5, 2013, Pages 446-453

Risk-adjusting hospital mortality using a comprehensive electronic record in an integrated health care delivery system

Author keywords

care directive; electronic medical records; end of life care; hospital mortality; physiologic derangement; risk adjustment; severity of illness

Indexed keywords

ADULT; AGED; ARTICLE; CALIBRATION; COHORT ANALYSIS; COMORBIDITY; CONTROLLED STUDY; ELECTRONIC MEDICAL RECORD; FEMALE; HOSPITAL PATIENT; HOSPITALIZATION; HUMAN; INTEGRATED HEALTH CARE SYSTEM; INTENSIVE CARE; LOGISTIC REGRESSION ANALYSIS; MAJOR CLINICAL STUDY; MALE; METHODOLOGY; MORTALITY; PATIENT CARE; PERFORMANCE; PRIORITY JOURNAL; RETROSPECTIVE STUDY; RISK ASSESSMENT; STATISTICAL MODEL; TERMINAL CARE; UNITED STATES; VALIDATION STUDY;

EID: 84876279048     PISSN: 00257079     EISSN: 15371948     Source Type: Journal    
DOI: 10.1097/MLR.0b013e3182881c8e     Document Type: Article
Times cited : (153)

References (41)
  • 1
    • 0033019723 scopus 로고    scopus 로고
    • Explaining differences in English hospital death rates using routinely collected data
    • Jarman B, Gault S, Alves B, et al. Explaining differences in English hospital death rates using routinely collected data. BMJ. 1999;318: 1515-1520.
    • (1999) BMJ. , vol.318 , pp. 1515-1520
    • Jarman, B.1    Gault, S.2    Alves, B.3
  • 2
    • 12444297254 scopus 로고    scopus 로고
    • Coded data from administrative sources
    • Iezzoni LI, ed, Chicago, IL: Health Academy Press
    • Iezzoni LI. Coded data from administrative sources. In: Iezzoni LI, ed. Risk Adjustment for Measuring Health Care Outcomes. Chicago, IL: Health Academy Press; 2003:83-138.
    • (2003) Risk Adjustment for Measuring Health Care Outcomes , pp. 83-138
    • Iezzoni, L.I.1
  • 3
    • 33746344294 scopus 로고    scopus 로고
    • Accuracy of hospital report cards based on administrative data
    • Glance LG, Dick AW, Osier TM, et al. Accuracy of hospital report cards based on administrative data. Health Serv Res. 2006;41:1413-1437.
    • (2006) Health Serv Res. , vol.41 , pp. 1413-1437
    • Glance, L.G.1    Dick, A.W.2    Osier, T.M.3
  • 4
    • 0037791848 scopus 로고    scopus 로고
    • Automated intensive care unit risk adjustment: Results from a National Veterans Affairs study
    • Render ML, Kim HM, Welsh DE, et al. Automated intensive care unit risk adjustment: results from a National Veterans Affairs study. Crit Care Med. 2003;31:1638-1646.
    • (2003) Crit Care Med. , vol.31 , pp. 1638-1646
    • Render, M.L.1    Kim, H.M.2    Welsh, D.E.3
  • 5
    • 21044455600 scopus 로고    scopus 로고
    • Variation in outcomes in Veterans Affairs intensive care units with a computerized severity measure
    • Render ML, Kim HM, Deddens J, et al. Variation in outcomes in Veterans Affairs intensive care units with a computerized severity measure. Crit Care Med. 2005;33:930-939.
    • (2005) Crit Care Med. , vol.33 , pp. 930-939
    • Render, M.L.1    Kim, H.M.2    Deddens, J.3
  • 6
    • 78149268444 scopus 로고    scopus 로고
    • Clinical review: Scoring systems in the critically ill
    • Vincent JL, Moreno R. Clinical review: scoring systems in the critically ill. Crit Care. 2010;14:207-215.
    • (2010) Crit Care. , vol.14 , pp. 207-215
    • Vincent, J.L.1    Moreno, R.2
  • 7
    • 84860904801 scopus 로고    scopus 로고
    • Derivation and validation of a risk adjustment model for predicting seven day mortality in emergency medical admissions: Mixed prospective and retrospective cohort study
    • Goodacre S, Wilson R, Shephard N, et al. Derivation and validation of a risk adjustment model for predicting seven day mortality in emergency medical admissions: mixed prospective and retrospective cohort study. BMJ. 2012;344:e2904.
    • (2012) BMJ. , vol.344
    • Goodacre, S.1    Wilson, R.2    Shephard, N.3
  • 8
    • 33846021262 scopus 로고    scopus 로고
    • Enhancement of claims data to improve risk adjustment of hospital mortality
    • Pine M, Jordan HS, Elixhauser A, et al. Enhancement of claims data to improve risk adjustment of hospital mortality. JAMA. 2007;297:71-76.
    • (2007) JAMA. , vol.297 , pp. 71-76
    • Pine, M.1    Jordan, H.S.2    Elixhauser, A.3
  • 9
    • 34547566315 scopus 로고    scopus 로고
    • Using automated clinical data for risk adjustment: Development and validation of six disease-specific mortality predictive models for pay-for-performance
    • Tabak YP, Johannes RS, Silber JH. Using automated clinical data for risk adjustment: development and validation of six disease-specific mortality predictive models for pay-for-performance. Med Care. 2007;45:789-805.
    • (2007) Med Care. , vol.45 , pp. 789-805
    • Tabak, Y.P.1    Johannes, R.S.2    Silber, J.H.3
  • 10
    • 42449097690 scopus 로고    scopus 로고
    • Risk adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases
    • Escobar G, Greene J, Scheirer P, et al. Risk adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases. Med Care. 2008;46:232-239.
    • (2008) Med Care. , vol.46 , pp. 232-239
    • Escobar, G.1    Greene, J.2    Scheirer, P.3
  • 11
    • 77952421241 scopus 로고    scopus 로고
    • The Kaiser Permanente inpatient risk adjustment methodology was valid in an external patient population
    • van Walraven C, Escobar GJ, Greene JD, et al. The Kaiser Permanente inpatient risk adjustment methodology was valid in an external patient population. J Clin Epidemiol. 2010;63:798-803.
    • (2010) J Clin Epidemiol. , vol.63 , pp. 798-803
    • Van Walraven, C.1    Escobar, G.J.2    Greene, J.D.3
  • 12
    • 77954954080 scopus 로고    scopus 로고
    • Length of stay predictions: Improvements through the use of automated laboratory and comorbidity variables
    • Liu V, Kipnis P, Gould MK, et al. Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables. Med Care. 2010;48:739-744.
    • (2010) Med Care. , vol.48 , pp. 739-744
    • Liu, V.1    Kipnis, P.2    Gould, M.K.3
  • 13
    • 79551509338 scopus 로고    scopus 로고
    • Intra-hospital transfers to a higher level of care: Contribution to total hospital and intensive care unit (ICU) mortality and length of stay (LOS)
    • Escobar GJ, Greene JD, Gardner MN, et al. Intra-hospital transfers to a higher level of care: contribution to total hospital and intensive care unit (ICU) mortality and length of stay (LOS). JHosp Med. 2011;6:74-80.
    • (2011) JHosp Med. , vol.6 , pp. 74-80
    • Escobar, G.J.1    Greene, J.D.2    Gardner, M.N.3
  • 14
    • 84857799166 scopus 로고    scopus 로고
    • Adverse outcomes associated with delayed intensive care unit transfers in an integrated healthcare system
    • Liu V, Kipnis P, Rizk NW, et al. Adverse outcomes associated with delayed intensive care unit transfers in an integrated healthcare system. J Hosp Med. 2012;7:224-230.
    • (2012) J Hosp Med. , vol.7 , pp. 224-230
    • Liu, V.1    Kipnis, P.2    Rizk, N.W.3
  • 15
    • 0030765772 scopus 로고    scopus 로고
    • Linking automated databases for research in managed care settings
    • Selby JV. Linking automated databases for research in managed care settings. Ann Intern Med. 1997;127:719-724.
    • (1997) Ann Intern Med. , vol.127 , pp. 719-724
    • Selby, J.V.1
  • 16
    • 84861960489 scopus 로고    scopus 로고
    • Early detection of impending physiologic deterioration among patients who are not in intensive care: Development of predictive models using data from an automated electronic medical record
    • Escobar GJ, LaGuardia J, Turk BJ, et al. Early detection of impending physiologic deterioration among patients who are not in intensive care: development of predictive models using data from an automated electronic medical record. J Hosp Med. 2012;7:388-395.
    • (2012) J Hosp Med. , vol.7 , pp. 388-395
    • Escobar, G.J.1    Laguardia, J.2    Turk, B.J.3
  • 17
    • 78149401686 scopus 로고    scopus 로고
    • The effect of hospital-acquired Clostridium difficile infection on in-hospital mortality
    • Oake N, Taljaard M, van Walraven C, et al. The effect of hospital-acquired Clostridium difficile infection on in-hospital mortality. Arch Intern Med. 2010;170:1804-1810.
    • (2010) Arch Intern Med. , vol.170 , pp. 1804-1810
    • Oake, N.1    Taljaard, M.2    Van Walraven, C.3
  • 18
    • 84876229786 scopus 로고    scopus 로고
    • Addition of time-dependent covariates to a survival model significantly improved predictions for daily risk of hospital death
    • [Epub ahead of print]
    • Wong J, Taljaard M, Forster AJ, et al. Addition of time-dependent covariates to a survival model significantly improved predictions for daily risk of hospital death. J Eval Clin Pract. 2012. [Epub ahead of print].
    • (2012) J Eval Clin Pract.
    • Wong, J.1    Taljaard, M.2    Forster, A.J.3
  • 19
    • 80054753169 scopus 로고    scopus 로고
    • Kaiser Permanente's performance improvement system, part 3: Multisite improvements in care for patients with sepsis
    • Whippy A, Skeath M, Crawford B, et al. Kaiser Permanente's performance improvement system, part 3: Multisite improvements in care for patients with sepsis. Jt Comm J Qual Patient Saf. 2011;37:483-93.
    • (2011) Jt Comm J Qual Patient Saf. , vol.37 , pp. 483-493
    • Whippy, A.1    Skeath, M.2    Crawford, B.3
  • 20
    • 0026409568 scopus 로고
    • The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults
    • Knaus WA, Wagner DP, Draper EA, et al. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991;100:1619-1636.
    • (1991) Chest. , vol.100 , pp. 1619-1636
    • Knaus, W.A.1    Wagner, D.P.2    Draper, E.A.3
  • 21
    • 84876230805 scopus 로고    scopus 로고
    • Centers for Medicare & Medicaid Services, Accessed February 1, 2012
    • Centers for Medicare & Medicaid Services. Risk Adjustment. 2011. Available at: http://www.cms.gov/MedicareAdvtgSpecRateStats/06- Risk-adjustment.asp#TopOfPage. Accessed February 1, 2012.
    • (2011) Risk Adjustment.
  • 22
    • 77955672045 scopus 로고    scopus 로고
    • Comparison of the performance of the CMS Hierarchical Condition Category (CMS-HCC) risk adjuster with the Charlson and Elixhauser comorbidity measures in predicting mortality
    • Li P, Kim MM, Doshi JA. Comparison of the performance of the CMS Hierarchical Condition Category (CMS-HCC) risk adjuster with the Charlson and Elixhauser comorbidity measures in predicting mortality. BMC Health Serv Res. 2010;10:245-254.
    • (2010) BMC Health Serv Res. , vol.10 , pp. 245-254
    • Li, P.1    Kim, M.M.2    Doshi, J.A.3
  • 23
    • 0026639706 scopus 로고
    • Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases
    • Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45:613-619.
    • (1992) J Clin Epidemiol. , vol.45 , pp. 613-619
    • Deyo, R.A.1    Cherkin, D.C.2    Ciol, M.A.3
  • 24
    • 0027048851 scopus 로고
    • Random effects models with non-parametric priors
    • Butler SM, Louis TA. Random effects models with non-parametric priors. Stat Med. 1992;11:1981-2000.
    • (1992) Stat Med. , vol.11 , pp. 1981-2000
    • Butler, S.M.1    Louis, T.A.2
  • 25
    • 77956887506 scopus 로고
    • A note on a general definition of the coefficient of determination
    • Nagelkerke N. A note on a general definition of the coefficient of determination. Biometrika. 1991;78:691-692.
    • (1991) Biometrika. , vol.78 , pp. 691-692
    • Nagelkerke, N.1
  • 26
    • 0021135218 scopus 로고
    • Regression modelling strategies for improved prognostic prediction
    • Harrell FE Jr, Lee KL, Califf RM, et al. Regression modelling strategies for improved prognostic prediction. Stat Med. 1984;3:143-152.
    • (1984) Stat Med. , vol.3 , pp. 143-152
    • Harrell Jr., F.E.1    Lee, K.L.2    Califf, R.M.3
  • 28
    • 0031006441 scopus 로고    scopus 로고
    • A comparison of goodness-of-fit tests for the logistic regression model
    • Hosmer DW, Hosmer T, Le Cessie S, et al. A comparison of goodness-of-fit tests for the logistic regression model. Stat Med. 1997;16:965-980.
    • (1997) Stat Med. , vol.16 , pp. 965-980
    • Hosmer, D.W.1    Hosmer, T.2    Le Cessie, S.3
  • 29
    • 34548258778 scopus 로고    scopus 로고
    • Assessing the calibration of mortality benchmarks in critical care: The Hosmer-Lemeshow test revisited
    • Kramer AA, Zimmerman JE. Assessing the calibration of mortality benchmarks in critical care: The Hosmer-Lemeshow test revisited. Crit Care Med. 2007;35:2052-2056.
    • (2007) Crit Care Med. , vol.35 , pp. 2052-2056
    • Kramer, A.A.1    Zimmerman, J.E.2
  • 30
    • 38849091997 scopus 로고    scopus 로고
    • Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond
    • discussion 207-112
    • Pencina MJ, D'Agostino RB Sr, D'Agostino RB Jr, et al. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157-172; discussion 207-112
    • (2008) Stat Med. , vol.27 , pp. 157-172
    • Pencina, M.J.1    D'Agostino, R.B.S.R.2    D'Agostino Jr., R.B.3
  • 31
    • 22244451699 scopus 로고    scopus 로고
    • Should Do-Not-Resuscitate status be included as a mortality risk adjuster? the impact of DNR variations on performance reporting
    • Tabak YP, Johannes RS, Silber JH, et al. Should Do-Not-Resuscitate status be included as a mortality risk adjuster? The impact of DNR variations on performance reporting. Med Care. 2005;43:658-666.
    • (2005) Med Care. , vol.43 , pp. 658-666
    • Tabak, Y.P.1    Johannes, R.S.2    Silber, J.H.3
  • 32
    • 34547894167 scopus 로고    scopus 로고
    • Mortality as a measure of quality: Implications for palliative and end-of-life care
    • Holloway RG, Quill TE. Mortality as a measure of quality: implications for palliative and end-of-life care. JAMA. 2007;298:802-804.
    • (2007) JAMA. , vol.298 , pp. 802-804
    • Holloway, R.G.1    Quill, T.E.2
  • 33
    • 33846695162 scopus 로고    scopus 로고
    • Centers for Medicare & Medicaid Services, Accessed April 30, 2012
    • Centers for Medicare & Medicaid Services. Hospital Compare. 2012. Available at: http://www.hospitalcompare.hhs.gov. Accessed April, 30 2012.
    • (2012) Hospital Compare.
  • 34
    • 0033175034 scopus 로고    scopus 로고
    • Increased risk of death in patients with do-not-resuscitate orders
    • Shepardson LB, Youngner SJ, Speroff T, et al. Increased risk of death in patients with do-not-resuscitate orders. Med Care. 1999;37:727-737.
    • (1999) Med Care. , vol.37 , pp. 727-737
    • Shepardson, L.B.1    Youngner, S.J.2    Speroff, T.3
  • 35
    • 78649944501 scopus 로고    scopus 로고
    • Hospital mortality rates: How is palliative care taken into account?
    • Cassel JB, Jones AB, Meier DE, et al. Hospital mortality rates: how is palliative care taken into account? J Pain Symptom Manage. 2010;40: 914-925.
    • (2010) J Pain Symptom Manage. , vol.40 , pp. 914-925
    • Cassel, J.B.1    Jones, A.B.2    Meier, D.E.3
  • 36
    • 73949126487 scopus 로고    scopus 로고
    • Making hospital mortality measurement more meaningful: Incorporating advance directives and palliative care designations
    • Kroch EA, Johnson M, Martin J, et al. Making hospital mortality measurement more meaningful: incorporating advance directives and palliative care designations. Am J Med Qual. 2010;25:24-33.
    • (2010) Am J Med Qual. , vol.25 , pp. 24-33
    • Kroch, E.A.1    Johnson, M.2    Martin, J.3
  • 37
    • 78650594621 scopus 로고    scopus 로고
    • Variability in the measurement of hospital-wide mortality rates
    • Shahian DM, Wolf RE, Iezzoni LI, et al. Variability in the measurement of hospital-wide mortality rates. N Engl J Med. 2010;363:2530-2539.
    • (2010) N Engl J Med. , vol.363 , pp. 2530-2539
    • Shahian, D.M.1    Wolf, R.E.2    Iezzoni, L.I.3
  • 38
    • 0000251207 scopus 로고    scopus 로고
    • Factors associated with do-not-resuscitate orders: Patients' preferences, prognoses, and physicians' judgments. SUPPORT Investigators. Study to understand prognoses and preferences for outcomes and risks of treatment
    • Hakim RB, Teno JM, Harrell FE Jr, et al. Factors associated with do-not-resuscitate orders: patients' preferences, prognoses, and physicians' judgments. SUPPORT Investigators. Study to understand prognoses and preferences for outcomes and risks of treatment. Ann Intern Med. 1996;125:284-293.
    • (1996) Ann Intern Med. , vol.125 , pp. 284-293
    • Hakim, R.B.1    Teno, J.M.2    Harrell Jr., F.E.3
  • 39
    • 42449147929 scopus 로고    scopus 로고
    • Access to clinically-detailed patient information: A fundamental element for improving the efficiency and quality of healthcare
    • Hayward RA. Access to clinically-detailed patient information: a fundamental element for improving the efficiency and quality of healthcare. Med Care. 2008;46:229-231.
    • (2008) Med Care. , vol.46 , pp. 229-231
    • Hayward, R.A.1
  • 40
    • 77951623293 scopus 로고    scopus 로고
    • Effect of choice of estimation method on inter-hospital mortality rate comparisons
    • Kipnis P, Escobar GJ, Draper D. Effect of choice of estimation method on inter-hospital mortality rate comparisons. Med Care. 2010;48:456-85.
    • (2010) Med Care. , vol.48 , pp. 456-485
    • Kipnis, P.1    Escobar, G.J.2    Draper, D.3
  • 41
    • 77952566346 scopus 로고    scopus 로고
    • Bayesian and frequentist methods for provider profiling using risk-adjusted assessments of medical outcomes
    • Racz MJ, J Sedransk. Bayesian and frequentist methods for provider profiling using risk-adjusted assessments of medical outcomes. J Am Stat Assoc. 2010;105:48-58.
    • (2010) J Am Stat Assoc. , vol.105 , pp. 48-58
    • Racz, M.J.1    Sedransk, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.