메뉴 건너뛰기




Volumn 73, Issue 4, 2017, Pages 1111-1122

Outcome-adaptive lasso: Variable selection for causal inference

Author keywords

Comparative effectiveness; Model selection; Observational studies; Propensity score

Indexed keywords

PATIENT TREATMENT;

EID: 85014657421     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/biom.12679     Document Type: Article
Times cited : (192)

References (46)
  • 2
    • 82055199021 scopus 로고    scopus 로고
    • Covariate selection for the nonparametric estimation of an average treatment effect
    • De Luna, X., Waernbaum, I., and Richardson, T. (2011). Covariate selection for the nonparametric estimation of an average treatment effect. Biometrika 98, 861–875.
    • (2011) Biometrika , vol.98 , pp. 861-875
    • De Luna, X.1    Waernbaum, I.2    Richardson, T.3
  • 4
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348–1360.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 5
    • 40049100642 scopus 로고    scopus 로고
    • Invited commentary: Variable selection versus shrinkage in the control of multiple confounders
    • Greenland, S. (2008). Invited commentary: Variable selection versus shrinkage in the control of multiple confounders. American Journal of Epidemiology 167, 523.
    • (2008) American Journal of Epidemiology , vol.167 , pp. 523
    • Greenland, S.1
  • 6
    • 84912010652 scopus 로고    scopus 로고
    • Targeted smoothing parameter selection for estimating average causal effects
    • Häggström, J. and de Luna, X. (2014). Targeted smoothing parameter selection for estimating average causal effects. Computational Statistics 29, 1727–1748.
    • (2014) Computational Statistics , vol.29 , pp. 1727-1748
    • Häggström, J.1    de Luna, X.2
  • 7
    • 85153157909 scopus 로고    scopus 로고
    • Package ‘CovSel’, CRAN
    • Häggström, J. and Persson, E. (2015). Package ‘CovSel’. CRAN.
    • (2015)
    • Häggström, J.1    Persson, E.2
  • 8
  • 10
    • 84919709419 scopus 로고    scopus 로고
    • Confidence intervals and hypothesis testing for high-dimensional regression
    • Javanmard, A. and Montanari, A. (2014). Confidence intervals and hypothesis testing for high-dimensional regression. The Journal of Machine Learning Research 15, 2869–2909.
    • (2014) The Journal of Machine Learning Research , vol.15 , pp. 2869-2909
    • Javanmard, A.1    Montanari, A.2
  • 13
    • 15744376883 scopus 로고    scopus 로고
    • Model selection and inference: Facts and fiction
    • Leeb, H. and Potscher, B. (2005). Model selection and inference: Facts and fiction. Econometric Theory 21, 21–59.
    • (2005) Econometric Theory , vol.21 , pp. 21-59
    • Leeb, H.1    Potscher, B.2
  • 14
    • 36148997227 scopus 로고    scopus 로고
    • Sparse estimators and the oracle property, or the return of hodges estimator
    • Leeb, H. and Potscher, B. (2008). Sparse estimators and the oracle property, or the return of hodges estimator. Journal of Econometrics 142, 201–211.
    • (2008) Journal of Econometrics , vol.142 , pp. 201-211
    • Leeb, H.1    Potscher, B.2
  • 15
    • 84928233944 scopus 로고    scopus 로고
    • Regularization methods for high-dimensional instrumental variables regression with an application to genetical genomics
    • Lin, W., Feng, R., and Li, H. (2015). Regularization methods for high-dimensional instrumental variables regression with an application to genetical genomics. Journal of the American Statistical Association 110, 270–288.
    • (2015) Journal of the American Statistical Association , vol.110 , pp. 270-288
    • Lin, W.1    Feng, R.2    Li, H.3
  • 16
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study
    • Lunceford, J. K. and Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study. Statistics in Medicine 23, 2937–60.
    • (2004) Statistics in Medicine , vol.23 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 19
    • 84858717588 scopus 로고    scopus 로고
    • A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers
    • In
    • Negahban, S., Yu, B., Wainwright, M., and Ravikumar, P. (2009). A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. In Advances in Neural Information Processing Systems 22, 1348–1356.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1348-1356
    • Negahban, S.1    Yu, B.2    Wainwright, M.3    Ravikumar, P.4
  • 20
    • 79959558713 scopus 로고    scopus 로고
    • The implications of propensity score variable selection strategies in pharmacoepidemiology: An empirical illustration
    • Patrick, A., Schneeweiss, S., Brookhart, M., Glynn, R., Rothman, K., Avorn, J., et al. (2011). The implications of propensity score variable selection strategies in pharmacoepidemiology: An empirical illustration. Pharmacoepidemiology and Drug Safety 20, 551–559.
    • (2011) Pharmacoepidemiology and Drug Safety , vol.20 , pp. 551-559
    • Patrick, A.1    Schneeweiss, S.2    Brookhart, M.3    Glynn, R.4    Rothman, K.5    Avorn, J.6
  • 21
    • 85153158699 scopus 로고    scopus 로고
    • Causality, Cambridge, England Cambridge University Press
    • Pearl, J. (2000). Causality. Cambridge, England: Cambridge University Press.
    • (2000)
    • Pearl, J.1
  • 22
    • 46149139403 scopus 로고
    • A new approach to causal inference in mortality studies with sustained exposure periods—Application to control of the healthy worker survivor effect
    • Robins, J. (1986). A new approach to causal inference in mortality studies with sustained exposure periods—Application to control of the healthy worker survivor effect. Mathematical Modelling 7, 1393–1512.
    • (1986) Mathematical Modelling , vol.7 , pp. 1393-1512
    • Robins, J.1
  • 23
    • 0022569935 scopus 로고
    • The role of model selection in causal inference from nonexperimental data
    • Robins, J. and Greenland, S. (1986). The role of model selection in causal inference from nonexperimental data. American Journal of Epidemiology 123, 392–402.
    • (1986) American Journal of Epidemiology , vol.123 , pp. 392-402
    • Robins, J.1    Greenland, S.2
  • 25
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P. and Rubin, D. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41–55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.1    Rubin, D.2
  • 26
    • 78651325910 scopus 로고    scopus 로고
    • A note on overadjustment in inverse probability weighted estimation
    • Rotnitzky, A., Li, L., and Li, X. (2010). A note on overadjustment in inverse probability weighted estimation. Biometrika 97, 1–5.
    • (2010) Biometrika , vol.97 , pp. 1-5
    • Rotnitzky, A.1    Li, L.2    Li, X.3
  • 27
    • 0000394113 scopus 로고
    • The use of matched sampling and regression adjustment to remove bias in observational studies
    • Rubin, D. (1973). The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics 29, 184–203.
    • (1973) Biometrics , vol.29 , pp. 184-203
    • Rubin, D.1
  • 28
    • 58149417330 scopus 로고
    • Estimating causal effects of treatment in randomized and nonrandomized studies
    • Rubin, D. (1974). Estimating causal effects of treatment in randomized and nonrandomized studies. Journal of Educational Psychology 66, 688–701.
    • (1974) Journal of Educational Psychology , vol.66 , pp. 688-701
    • Rubin, D.1
  • 29
  • 31
    • 67651021231 scopus 로고    scopus 로고
    • Overadjustment bias and unnecessary adjustment in epidemiologic studies
    • Schisterman, E., Cole, S., and Platt, R. (2009). Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 20, 488.
    • (2009) Epidemiology , vol.20 , pp. 488-499
    • Schisterman, E.1    Cole, S.2    Platt, R.3
  • 32
    • 67651042983 scopus 로고    scopus 로고
    • High-dimensional propensity score adjustment in studies of treatment effects using health care claims data
    • Schneeweiss, S., Rassen, J., Glynn, R., Avorn, J., Mogun, H., and Brookhart, M. (2009). High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 20, 512–522.
    • (2009) Epidemiology , vol.20 , pp. 512-522
    • Schneeweiss, S.1    Rassen, J.2    Glynn, R.3    Avorn, J.4    Mogun, H.5    Brookhart, M.6
  • 36
    • 84973307713 scopus 로고    scopus 로고
    • Association of levels of opioid use with pain and activity interference among patients initiating chronic opioid therapy: A longitudinal study
    • Turner, J., Shortreed, S., Saunders, K., LeResche, L., and Von Korff, M. (2016). Association of levels of opioid use with pain and activity interference among patients initiating chronic opioid therapy: A longitudinal study. PAIN 154, 849–857.
    • (2016) PAIN , vol.154 , pp. 849-857
    • Turner, J.1    Shortreed, S.2    Saunders, K.3    LeResche, L.4    Von Korff, M.5
  • 37
    • 84988001472 scopus 로고    scopus 로고
    • On asymptotically optimal confidence regions and tests for high-dimensional models
    • Van de Geer, S., Buhlmann, P., Ritov, Y., and Dezeure, R. (2014). On asymptotically optimal confidence regions and tests for high-dimensional models. The Annals of Statistics 42, 1166–1202.
    • (2014) The Annals of Statistics , vol.42 , pp. 1166-1202
    • Van de Geer, S.1    Buhlmann, P.2    Ritov, Y.3    Dezeure, R.4
  • 40
    • 84951779188 scopus 로고    scopus 로고
    • The impact of opioid risk reduction initiatives on high-dose opioid prescribing for chronic opioid therapy patients
    • Von Korff, M., Dublin, S., Walker, R., Parchman, M., Shortreed, S., Hansen, R., et al. (2016). The impact of opioid risk reduction initiatives on high-dose opioid prescribing for chronic opioid therapy patients. The Journal of Pain 17, 101–110.
    • (2016) The Journal of Pain , vol.17 , pp. 101-110
    • Von Korff, M.1    Dublin, S.2    Walker, R.3    Parchman, M.4    Shortreed, S.5    Hansen, R.6
  • 41
    • 84941748969 scopus 로고    scopus 로고
    • Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models
    • Wang, C., Dominici, F., Parmigiani, G., and Zigler, C. (2015). Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models. Biometrics 71, 654–665.
    • (2015) Biometrics , vol.71 , pp. 654-665
    • Wang, C.1    Dominici, F.2    Parmigiani, G.3    Zigler, C.4
  • 42
    • 84866746931 scopus 로고    scopus 로고
    • Bayesian effect estimation accounting for adjustment uncertainty
    • Wang, C., Parmigiani, G., and Dominici, F. (2012). Bayesian effect estimation accounting for adjustment uncertainty. Biometrics 68, 661–671.
    • (2012) Biometrics , vol.68 , pp. 661-671
    • Wang, C.1    Parmigiani, G.2    Dominici, F.3
  • 43
    • 84919844877 scopus 로고    scopus 로고
    • Confounder selection via penalized credible regions
    • Wilson, A. and Reich, B. (2014). Confounder selection via penalized credible regions. Biometrics 70, 852–861.
    • (2014) Biometrics , vol.70 , pp. 852-861
    • Wilson, A.1    Reich, B.2
  • 44
    • 84901800622 scopus 로고    scopus 로고
    • Uncertainty in propensity score estimation: Bayesian methods for variable selection and model averaged causal effects
    • Zigler, C. and Dominici, F. (2014). Uncertainty in propensity score estimation: Bayesian methods for variable selection and model averaged causal effects. Journal of the American Statistical Association 109, 95–107.
    • (2014) Journal of the American Statistical Association , vol.109 , pp. 95-107
    • Zigler, C.1    Dominici, F.2
  • 45
    • 84875963163 scopus 로고    scopus 로고
    • Model feedback in bayesian propensity score estimation
    • Zigler, C., Watts, K., Yeh, R., Wang, Y., Coull, B., and Dominici, F. (2013). Model feedback in bayesian propensity score estimation. Biometrics 69, 263–273.
    • (2013) Biometrics , vol.69 , pp. 263-273
    • Zigler, C.1    Watts, K.2    Yeh, R.3    Wang, Y.4    Coull, B.5    Dominici, F.6
  • 46


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.