메뉴 건너뛰기




Volumn 68, Issue , 2015, Pages

Covsel: An R package for covariate selection when estimating average causal effects

Author keywords

Causal inference; Dimension reduction; Dr; Np; R

Indexed keywords


EID: 84949921188     PISSN: 15487660     EISSN: None     Source Type: Journal    
DOI: 10.18637/jss.v068.i01     Document Type: Article
Times cited : (12)

References (29)
  • 1
    • 78449245457 scopus 로고    scopus 로고
    • Bias-Corrected Matching Estimators for Average Treatment Effects
    • Abadie A, Imbens G (2011). “Bias-Corrected Matching Estimators for Average Treatment Effects.” Journal of Business & Economic Statistics, 29(1), 1–11. doi:10.1198/jbes.2009.07333
    • (2011) Journal of Business & Economic Statistics , vol.29 , Issue.1 , pp. 1-11
    • Abadie, A.1    Imbens, G.2
  • 2
    • 15844416978 scopus 로고    scopus 로고
    • Testing Predictor Contributions in Sufficent Dimension Reduction
    • Cook RD (2004). “Testing Predictor Contributions in Sufficent Dimension Reduction.” The Annals of Statistics, 32(3), 1061–1092. doi:10.1214/009053604000000292
    • (2004) The Annals of Statistics , vol.32 , Issue.3 , pp. 1061-1092
    • Cook, R.D.1
  • 3
    • 84881499895 scopus 로고
    • Sliced Inverse Regression for Dimension Reduction: Comment.
    • Cook RD, Weisberg S (1991). “Sliced Inverse Regression for Dimension Reduction: Comment.” Journal of the American Statistical Association, 86(414), 328–332. doi:10.2307/ 2290564
    • (1991) Journal of the American Statistical Association , vol.86 , Issue.414 , pp. 328-332
    • Cook, R.D.1    Weisberg, S.2
  • 4
    • 0002384709 scopus 로고
    • Conditional Independence in Statistical Theory
    • Dawid A (1979). “Conditional Independence in Statistical Theory.” Journal of the Royal Statistical Society B, 41(1), 1–31
    • (1979) Journal of the Royal Statistical Society B , vol.41 , Issue.1 , pp. 1-31
    • Dawid, A.1
  • 5
    • 82055199021 scopus 로고    scopus 로고
    • Covariate Selection for the Non-Parametric Estimation of an Average Treatment Effect
    • De Luna X, Waernbaum I, Richardson T (2011). “Covariate Selection for the Non-Parametric Estimation of an Average Treatment Effect.” Biometrika, 98(4), 861–875. doi:10.1093/biomet/asr041
    • (2011) Biometrika , vol.98 , Issue.4 , pp. 861-875
    • De Luna, X.1    Waernbaum, I.2    Richardson, T.3
  • 6
    • 0442309558 scopus 로고    scopus 로고
    • Causal Effects in Nonexperimental Studies: Reevaluating the Evaluation of Training Programs.
    • Dehejia R, Wahba S (1999). “Causal Effects in Nonexperimental Studies: Reevaluating the Evaluation of Training Programs.” Journal of the American Statistical Association, 94(448), 1053–1062. doi:10.1080/01621459.1999.10473858
    • (1999) Journal of the American Statistical Association , vol.94 , Issue.448 , pp. 1053-1062
    • Dehejia, R.1    Wahba, S.2
  • 9
    • 1842533937 scopus 로고    scopus 로고
    • Functional Restriction and Efficiency in Causal Inference
    • Hahn J (2004). “Functional Restriction and Efficiency in Causal Inference.” The Review of Economics and Statistics, 86(1), 73–76. doi:10.1162/003465304323023688
    • (2004) The Review of Economics and Statistics , vol.86 , Issue.1 , pp. 73-76
    • Hahn, J.1
  • 10
    • 48749088746 scopus 로고    scopus 로고
    • Nonparametric Econometrics: The np Package.
    • Hayfield T, Racine J (2008). “Nonparametric Econometrics: The np Package.” Journal of Statistical Software, 27(5), 1–32. doi:10.18637/jss.v027.i05
    • (2008) Journal of Statistical Software , vol.27 , Issue.5 , pp. 1-32
    • Hayfield, T.1    Racine, J.2
  • 11
    • 79958747321 scopus 로고    scopus 로고
    • MatchIt: Nonparametric Preprocessing for Parametric Causal Inference.
    • Ho D, Imai K, King G, Stuart EA (2011). “MatchIt: Nonparametric Preprocessing for Parametric Causal Inference.” Journal of Statistical Software, 42(8), 1–28. doi:10.18637/jss.v042.i08
    • (2011) Journal of Statistical Software , vol.42 , Issue.8 , pp. 1-28
    • Ho, D.1    Imai, K.2    King, G.3    Stuart, E.A.4
  • 12
    • 78651098321 scopus 로고    scopus 로고
    • Cem: Software for Coarsened Exact Matching.
    • Iacus S, King G, Porro G (2009). “cem: Software for Coarsened Exact Matching.” Journal of Statistical Software, 30(9), 1–27. doi:10.18637/jss.v030.i09
    • (2009) Journal of Statistical Software , vol.30 , Issue.9 , pp. 1-27
    • Iacus, S.1    King, G.2    Porro, G.3
  • 13
    • 64849112179 scopus 로고    scopus 로고
    • Recent Developments in the Econometrics of Program Evaluation
    • Imbens G, Wooldridge J (2009). “Recent Developments in the Econometrics of Program Evaluation.” Journal of Economic Literature, 47(1), 5–86. doi:10.1257/jel.47.1.5
    • (2009) Journal of Economic Literature , vol.47 , Issue.1 , pp. 5-86
    • Imbens, G.1    Wooldridge, J.2
  • 14
    • 77953150321 scopus 로고    scopus 로고
    • Collaborative Double Robust Targeted Maximum Likelihood Estimation
    • Laan M, Gruber S (2010). “Collaborative Double Robust Targeted Maximum Likelihood Estimation.” International Journal of Biostatistics, 6(1), Article 17. doi:10.2202/1557-4679.1181
    • (2010) International Journal of Biostatistics , vol.6 , Issue.1
    • Laan, M.1    Gruber, S.2
  • 15
    • 0001093804 scopus 로고
    • Evaluating the Econometric Evaluations of Training Programs with Experimental Data
    • LaLonde R (1986). “Evaluating the Econometric Evaluations of Training Programs with Experimental Data.” The American Economic Review, 76(4), 604–620
    • (1986) The American Economic Review , vol.76 , Issue.4 , pp. 604-620
    • Lalonde, R.1
  • 16
    • 84949863008 scopus 로고    scopus 로고
    • R package version 0.9-19
    • Leisch F, Weingessel A, Hornik K (2012). bindata: Generation of Artificial Binary Data. R package version 0.9-19, URL http://CRAN.R-project.org/package=bindata.
    • (2012)
    • Leisch, F.1    Weingessel, A.2    Hornik, K.3
  • 18
    • 77950836635 scopus 로고    scopus 로고
    • Efficient Estimation of Average Treatment Effects with Mixed Categorical and Continuous Data
    • Li Q, Racine J, Wooldridge J (2009). “Efficient Estimation of Average Treatment Effects with Mixed Categorical and Continuous Data.” Journal of Business & Economic Statistics, 27(2), 206–223. doi:10.1198/jbes.2009.0015
    • (2009) Journal of Business & Economic Statistics , vol.27 , Issue.2 , pp. 206-223
    • Li, Q.1    Racine, J.2    Wooldridge, J.3
  • 20
    • 84863304598 scopus 로고    scopus 로고
    • R Core Team , R Foundation for Statistical Computing, Vienna, Austria
    • R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
    • (2015) R: A Language and Environment for Statistical Computing
  • 21
    • 21844487694 scopus 로고
    • Semiparametric Efficiency in Multivariate Regression Models with Missing Data
    • Robins J, Rotnitzky A (1995). “Semiparametric Efficiency in Multivariate Regression Models with Missing Data.” Journal of the American Statistical Association, 90(429), 122–129. doi:10.1080/01621459.1995.10476494
    • (1995) Journal of the American Statistical Association , vol.90 , Issue.429 , pp. 122-129
    • Robins, J.1    Rotnitzky, A.2
  • 22
    • 58149417330 scopus 로고
    • Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies
    • Rubin D (1974). “Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies.” Journal of Educational Psychology, 66(5), 688–701. doi:10.1037/h0037350
    • (1974) Journal of Educational Psychology , vol.66 , Issue.5 , pp. 688-701
    • Rubin, D.1
  • 23
    • 0030862072 scopus 로고    scopus 로고
    • Estimating Causal Effects from Large Data Sets Using Propensity Scores
    • Rubin D (1997). “Estimating Causal Effects from Large Data Sets Using Propensity Scores.” The Annals of Internal Medicine, 127(8), 757–763. doi:10.7326/0003-4819-127-8\ _Part\_2-199710151-00064
    • (1997) The Annals of Internal Medicine , vol.127 , Issue.8 , pp. 757-763
    • Rubin, D.1
  • 24
    • 79961226937 scopus 로고    scopus 로고
    • Multivariate and Propensity Score Matching Software with Automated Balance Optimization: The Matching Package for R.
    • Sekhon J (2011). “Multivariate and Propensity Score Matching Software with Automated Balance Optimization: The Matching Package for R.” Journal of Statistical Software, 42(7), 1–52. doi:10.18637/jss.v042.i07
    • (2011) Journal of Statistical Software , vol.42 , Issue.7 , pp. 1-52
    • Sekhon, J.1
  • 25
    • 10044222268 scopus 로고    scopus 로고
    • Does Matching Overcome LaLondes Critique of Nonexperimental Estimators?”
    • Smith J, Todd P (2005). “Does Matching Overcome LaLonde’s Critique of Nonexperimental Estimators?” Journal of Econometrics, 125(1–2), 305–353. doi:10.1016/j.jeconom.2004.04.011
    • (2005) Journal of Econometrics , vol.125 , Issue.1-2 , pp. 305-353
    • Smith, J.1    Todd, P.2
  • 26
    • 84972526326 scopus 로고
    • On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9.
    • Translated and edited by D. M. Dabrowska and T. P. Speed from the Polish original, which appeared in Roczniki Nauk Rolniczych Tom X (1923) 1–51 (Annals of Agricultural Sciences)
    • Splawa-Neyman J (1990). “On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9.” Statistical Science, 5(4), 465–472Translated and edited by D. M. Dabrowska and T. P. Speed from the Polish original, which appeared in Roczniki Nauk Rolniczych Tom X (1923) 1–51 (Annals of Agricultural Sciences).
    • (1990) Statistical Science , vol.5 , Issue.4 , pp. 465-472
    • Splawa-Neyman, J.1
  • 27
    • 79953903665 scopus 로고    scopus 로고
    • On Model Selection and Model Misspecification in Causal Inference
    • Vansteelandt S, Bekaert M, Claeskens G (2012). “On Model Selection and Model Misspecification in Causal Inference.” Statistical Methods in Medical Research, 21(1), 7–30. doi: 10.1177/0962280210387717
    • (2012) Statistical Methods in Medical Research , vol.21 , Issue.1 , pp. 7-30
    • Vansteelandt, S.1    Bekaert, M.2    Claeskens, G.3
  • 29
    • 4544378893 scopus 로고    scopus 로고
    • Dimension Reduction Regression in R
    • Weisberg S (2002). “Dimension Reduction Regression in R.” Journal of Statistical Software, 7(1), 1–22. doi:10.18637/jss.v007.i01.
    • (2002) Journal of Statistical Software , vol.7 , Issue.1 , pp. 1-22
    • Weisberg, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.