메뉴 건너뛰기




Volumn 69, Issue 1, 2013, Pages 263-273

Model Feedback in Bayesian Propensity Score Estimation

Author keywords

Bayesian estimation; Causal inference; Comparative effectiveness; Model feedback; Propensity score

Indexed keywords

HEALTH INSURANCE;

EID: 84875963163     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2012.01830.x     Document Type: Article
Times cited : (102)

References (19)
  • 2
    • 33644851650 scopus 로고    scopus 로고
    • Doubly robust estimation in missing data and causal inference models
    • Bang, H. and Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics 61, 962-973.
    • (2005) Biometrics , vol.61 , pp. 962-973
    • Bang, H.1    Robins, J.M.2
  • 4
    • 0002864224 scopus 로고    scopus 로고
    • Confounding and collapsibility in causal inference
    • Greenland, S., Robins, J., and Pearl, J. (1999). Confounding and collapsibility in causal inference. Statistical Science 14, 29-46.
    • (1999) Statistical Science , vol.14 , pp. 29-46
    • Greenland, S.1    Robins, J.2    Pearl, J.3
  • 5
    • 70350537219 scopus 로고    scopus 로고
    • Stroke patient outcomes in US hospitals before the start of the joint commission primary stroke center certification program
    • Lichtman, J. H., Allen, N. B., Wang, Y., Watanabe, E., Jones, S. B., and Goldstein, L. B. (2009). Stroke patient outcomes in US hospitals before the start of the joint commission primary stroke center certification program. Stroke 40, 3574-3579.
    • (2009) Stroke , vol.40 , pp. 3574-3579
    • Lichtman, J.H.1    Allen, N.B.2    Wang, Y.3    Watanabe, E.4    Jones, S.B.5    Goldstein, L.B.6
  • 6
    • 83055193550 scopus 로고    scopus 로고
    • Calibrated bayes, for statistics in general, and missing data in particular
    • Little, R. (2011). Calibrated bayes, for statistics in general, and missing data in particular. Statistical Science 26, 162-174.
    • (2011) Statistical Science , vol.26 , pp. 162-174
    • Little, R.1
  • 8
    • 84866757285 scopus 로고    scopus 로고
    • Discussion of adjustment uncertainty and propensity scores
    • 68, 678-680.
    • McCandless, L. C. (2012). Discussion of adjustment uncertainty and propensity scores. Biometrics 68, 678-680.
    • (2012) Biometrics
    • McCandless, L.C.1
  • 10
    • 61749103209 scopus 로고    scopus 로고
    • Bayesian propensity score analysis for observational data
    • McCandless, L. C., Gustafson, P., and Austin, P. C. (2009). Bayesian propensity score analysis for observational data. Statistics in Medicine 28, 94-112.
    • (2009) Statistics in Medicine , vol.28 , pp. 94-112
    • McCandless, L.C.1    Gustafson, P.2    Austin, P.C.3
  • 12
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 13
    • 0542388294 scopus 로고
    • The use of propensity scores in applied bayesian inference
    • Valencia, Spain: Elsevier Science Publishers and Valencia University Press
    • Rubin, D. (1985). The use of propensity scores in applied bayesian inference. In Bayesian Statistics, Volume 2, 463-472. Valencia, Spain: Elsevier Science Publishers and Valencia University Press.
    • (1985) Bayesian Statistics , vol.2 , pp. 463-472
    • Rubin, D.1
  • 14
    • 33846253571 scopus 로고    scopus 로고
    • The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials
    • Rubin, D. B. (2007). The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Statistics in Medicine 26, 20-36.
    • (2007) Statistics in Medicine , vol.26 , pp. 20-36
    • Rubin, D.B.1
  • 15
    • 64349088593 scopus 로고    scopus 로고
    • For objective causal inference, design trumps analysis
    • Rubin, D. B. (2008). For objective causal inference, design trumps analysis. The Annals of Applied Statistics 2, 808-840.
    • (2008) The Annals of Applied Statistics , vol.2 , pp. 808-840
    • Rubin, D.B.1
  • 16
    • 67651042983 scopus 로고    scopus 로고
    • High-dimensional propensity score adjustment in studies of treatment effects using health care claims data
    • Schneeweiss, S., Rassen, J. A., Glynn, R. J., Avorn, J., Mogun, H., and Brookhart, M. A. (2009). High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 20, 512-522.
    • (2009) Epidemiology , vol.20 , pp. 512-522
    • Schneeweiss, S.1    Rassen, J.A.2    Glynn, R.J.3    Avorn, J.4    Mogun, H.5    Brookhart, M.A.6
  • 18
  • 19
    • 84866746931 scopus 로고    scopus 로고
    • Bayesian effect estimation accounting for adjustment uncertainty
    • 68, 661-671.
    • Wang, C., Parmigiani, G., and Dominici, F. (2012). Bayesian effect estimation accounting for adjustment uncertainty. Biometrics 68, 661-671.
    • (2012) Biometrics
    • Wang, C.1    Parmigiani, G.2    Dominici, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.