메뉴 건너뛰기




Volumn 71, Issue 3, 2015, Pages 654-665

Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models

Author keywords

Average causal effect; Bayesian adjustment for confounding; Confounder selection; Treatment effect heterogeneity

Indexed keywords

BAYESIAN NETWORKS; BIOMETRICS; HEALTH INSURANCE; UNCERTAINTY ANALYSIS;

EID: 84941748969     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/biom.12315     Document Type: Article
Times cited : (46)

References (28)
  • 3
    • 0002864224 scopus 로고    scopus 로고
    • Confounding and collapsibility in causal inference
    • Greenland, S., Robins, J. M., and Pearl, J. (1999). Confounding and collapsibility in causal inference. Statistical Science 14, 29-46.
    • (1999) Statistical Science , vol.14 , pp. 29-46
    • Greenland, S.1    Robins, J.M.2    Pearl, J.3
  • 5
    • 1842429563 scopus 로고    scopus 로고
    • Nonparametric estimation of average treatment effects under exogeneity: A review
    • Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: A review. Review of Economics and Statistics 86, 4-29.
    • (2004) Review of Economics and Statistics , vol.86 , pp. 4-29
    • Imbens, G.W.1
  • 6
    • 31344479653 scopus 로고    scopus 로고
    • The dangers of extreme counterfactuals
    • King, G. and Zeng, L. (2006). The dangers of extreme counterfactuals. Political Analysis 14, 131-159.
    • (2006) Political Analysis , vol.14 , pp. 131-159
    • King, G.1    Zeng, L.2
  • 7
    • 31344433620 scopus 로고    scopus 로고
    • Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect
    • Kurth, T., Walker, A. M., Glynn, R. J., Chan, K. A., Gaziano, J. M., Berger, K., and Robins, J. M. (2006). Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect. American Journal of Epidemiology 163, 262-270.
    • (2006) American Journal of Epidemiology , vol.163 , pp. 262-270
    • Kurth, T.1    Walker, A.M.2    Glynn, R.J.3    Chan, K.A.4    Gaziano, J.M.5    Berger, K.6    Robins, J.M.7
  • 8
    • 84888372873 scopus 로고    scopus 로고
    • The effect of the prior distribution in the Bayesian adjustment for confounding algorithm
    • Lefebvre, G., Atherton, J., and Talbot, D. (2014a). The effect of the prior distribution in the Bayesian adjustment for confounding algorithm. Computational Statistics & Data Analysis 70, 227-240.
    • (2014) Computational Statistics & Data Analysis , vol.70 , pp. 227-240
    • Lefebvre, G.1    Atherton, J.2    Talbot, D.3
  • 9
    • 84901914919 scopus 로고    scopus 로고
    • Extending the Bayesian adjustment for confounding algorithm to binary treatment covariates to estimate the effect of smoking on carotid intima-media thickness: The multi-ethnic study of atherosclerosis
    • Lefebvre, G., Delaney, J. A., and McClelland, R. L. (2014b). Extending the Bayesian adjustment for confounding algorithm to binary treatment covariates to estimate the effect of smoking on carotid intima-media thickness: The multi-ethnic study of atherosclerosis. Statistics in Medicine 33, 2797-2813.
    • (2014) Statistics in Medicine , vol.33 , pp. 2797-2813
    • Lefebvre, G.1    Delaney, J.A.2    McClelland, R.L.3
  • 10
    • 0034576526 scopus 로고    scopus 로고
    • A comparison of subset selection and analysis of covariance for the adjustment of confounders
    • Little, R. J., An, H., Johanns, J., and Giordani, B. (2000). A comparison of subset selection and analysis of covariance for the adjustment of confounders. Psychological Methods 5, 459.
    • (2000) Psychological Methods , vol.5 , pp. 459
    • Little, R.J.1    An, H.2    Johanns, J.3    Giordani, B.4
  • 11
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study
    • Lunceford, J. K. and Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study. Statistics in Medicine 23, 2937-2960.
    • (2004) Statistics in Medicine , vol.23 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 12
    • 63149083464 scopus 로고    scopus 로고
    • Different methods of balancing covariates leading to different effect estimates in the presence of effect modification
    • Lunt, M., Solomon, D., Rothman, K., Glynn, R., Hyrich, K., Symmons, D. P., Stürmer, T., et al. (2009). Different methods of balancing covariates leading to different effect estimates in the presence of effect modification. American Journal of Epidemiology 169, 909-917.
    • (2009) American Journal of Epidemiology , vol.169 , pp. 909-917
    • Lunt, M.1    Solomon, D.2    Rothman, K.3    Glynn, R.4    Hyrich, K.5    Symmons, D.P.6    Stürmer, T.7
  • 14
    • 61749103209 scopus 로고    scopus 로고
    • Bayesian propensity score analysis for observational data
    • McCandless, L. C., Gustafson, P., and Austin, P. C. (2009). Bayesian propensity score analysis for observational data. Statistics in Medicine 28, 94-112.
    • (2009) Statistics in Medicine , vol.28 , pp. 94-112
    • McCandless, L.C.1    Gustafson, P.2    Austin, P.C.3
  • 18
    • 46249084557 scopus 로고    scopus 로고
    • Toolkit for weighting and analysis of nonequivalent groups: A tutorial for the twang package
    • R Vignette. RAND.
    • Ridgeway, G., McCaffrey, D., Morral, A., Burgette, L., and Griffin, B. A. (2014). Toolkit for weighting and analysis of nonequivalent groups: A tutorial for the twang package. R Vignette. RAND.
    • (2014)
    • Ridgeway, G.1    McCaffrey, D.2    Morral, A.3    Burgette, L.4    Griffin, B.A.5
  • 19
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 20
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 66, 688-701.
    • (1974) Journal of Educational Psychology , vol.66 , pp. 688-701
    • Rubin, D.B.1
  • 22
  • 23
    • 33846253571 scopus 로고    scopus 로고
    • The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials
    • Rubin, D. B. (2007). The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials. Statistics in Medicine 26, 20-36.
    • (2007) Statistics in Medicine , vol.26 , pp. 20-36
    • Rubin, D.B.1
  • 24
    • 57749105474 scopus 로고    scopus 로고
    • Average causal effects from nonrandomized studies: A practical guide and simulated example
    • Schafer, J. L. and Kang, J. (2008). Average causal effects from nonrandomized studies: A practical guide and simulated example. Psychological Methods 13, 279.
    • (2008) Psychological Methods , vol.13 , pp. 279
    • Schafer, J.L.1    Kang, J.2
  • 26
    • 84866774377 scopus 로고    scopus 로고
    • Discussions on Bayesian effect estimation accounting for adjustment uncertainty
    • Vansteelandt, S. (2012). Discussions on Bayesian effect estimation accounting for adjustment uncertainty, " by Wang, C., Parmigiani, G., and Dominici, F. Biometrics 68, 675-678.
    • (2012) Biometrics , vol.68 , pp. 675-678
    • Vansteelandt, S.1    Wang, C.2    Parmigiani, G.3    Dominici, F.4
  • 27
    • 84866746931 scopus 로고    scopus 로고
    • Bayesian effect estimation accounting for adjustment uncertainty
    • Wang, C., Parmigiani, G., and Dominici, F. (2012). Bayesian effect estimation accounting for adjustment uncertainty. Biometrics 68, 661-671.
    • (2012) Biometrics , vol.68 , pp. 661-671
    • Wang, C.1    Parmigiani, G.2    Dominici, F.3
  • 28
    • 84901800622 scopus 로고    scopus 로고
    • Uncertainty in propensity score estimation: Bayesian methods for variable selection and model-averaged causal effects
    • Zigler, C. M. and Dominici, F. (2014). Uncertainty in propensity score estimation: Bayesian methods for variable selection and model-averaged causal effects. Journal of the American Statistical Association 109, 95-107.
    • (2014) Journal of the American Statistical Association , vol.109 , pp. 95-107
    • Zigler, C.M.1    Dominici, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.