-
1
-
-
34249007471
-
Cellular and molecular mechanisms of hypoxia-inducible factor driven vascular remodeling
-
Hanze J, Weissmann N, Grimminger F, et al. Cellular and molecular mechanisms of hypoxia-inducible factor driven vascular remodeling. Thromb Haemost. 2007; 97: 774–87.
-
(2007)
Thromb Haemost
, vol.97
, pp. 774-787
-
-
Hanze, J.1
Weissmann, N.2
Grimminger, F.3
-
2
-
-
0035676884
-
Pulmonary vascular remodeling: a target for therapeutic intervention in pulmonary hypertension
-
Jeffery TK, Wanstall JC. Pulmonary vascular remodeling: a target for therapeutic intervention in pulmonary hypertension. Pharmacol Ther. 2001; 92: 1–20.
-
(2001)
Pharmacol Ther
, vol.92
, pp. 1-20
-
-
Jeffery, T.K.1
Wanstall, J.C.2
-
3
-
-
33749345684
-
Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms
-
Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res. 2006; 99: 675–91.
-
(2006)
Circ Res
, vol.99
, pp. 675-691
-
-
Stenmark, K.R.1
Fagan, K.A.2
Frid, M.G.3
-
4
-
-
0038555374
-
Short-chain fatty acid inhibitors of histone deacetylases: promising anticancer therapeutics?
-
Chen JS, Faller DV, Spanjaard RA. Short-chain fatty acid inhibitors of histone deacetylases: promising anticancer therapeutics? Curr Cancer Drug Targets. 2003; 3: 219–36.
-
(2003)
Curr Cancer Drug Targets
, vol.3
, pp. 219-236
-
-
Chen, J.S.1
Faller, D.V.2
Spanjaard, R.A.3
-
5
-
-
43249120953
-
Histone deacetylase inhibitors: mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis
-
Shankar S, Srivastava RK. Histone deacetylase inhibitors: mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis. Adv Exp Med Biol. 2008; 615: 261–98.
-
(2008)
Adv Exp Med Biol
, vol.615
, pp. 261-298
-
-
Shankar, S.1
Srivastava, R.K.2
-
6
-
-
84869869682
-
HDAC inhibitor-based therapies: can we interpret the code?
-
New M, Olzscha H, La Thangue NB. HDAC inhibitor-based therapies: can we interpret the code? Mol Oncol. 2012; 6: 637–56.
-
(2012)
Mol Oncol
, vol.6
, pp. 637-656
-
-
New, M.1
Olzscha, H.2
La Thangue, N.B.3
-
7
-
-
84876888400
-
Sodium butyrate inhibits platelet-derived growth factor-induced proliferation and migration in pulmonary artery smooth muscle cells through Akt inhibition
-
Cantoni S, Galletti M, Zambelli F, et al. Sodium butyrate inhibits platelet-derived growth factor-induced proliferation and migration in pulmonary artery smooth muscle cells through Akt inhibition. FEBS J. 2013; 280: 2042–55.
-
(2013)
FEBS J
, vol.280
, pp. 2042-2055
-
-
Cantoni, S.1
Galletti, M.2
Zambelli, F.3
-
8
-
-
79953749086
-
Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition
-
Findeisen HM, Gizard F, Zhao Y, et al. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition. Arterioscler Thromb Vasc Biol. 2011; 31: 851–60.
-
(2011)
Arterioscler Thromb Vasc Biol
, vol.31
, pp. 851-860
-
-
Findeisen, H.M.1
Gizard, F.2
Zhao, Y.3
-
9
-
-
79251576774
-
Histone deacetylase inhibitors: the epigenetic therapeutics that repress hypoxia-inducible factors
-
Chen S, Sang N. Histone deacetylase inhibitors: the epigenetic therapeutics that repress hypoxia-inducible factors. J Biomed Biotechnol. 2011; 2011: 197946–59.
-
(2011)
J Biomed Biotechnol
, vol.2011
, pp. 197946-197959
-
-
Chen, S.1
Sang, N.2
-
10
-
-
0344897251
-
Gene expression profile of butyrate-inhibited vascular smooth muscle cell proliferation
-
Ranganna K, Yousefipour Z, Yatsu FM, et al. Gene expression profile of butyrate-inhibited vascular smooth muscle cell proliferation. Mol Cell Biochem. 2003; 254: 21–36.
-
(2003)
Mol Cell Biochem
, vol.254
, pp. 21-36
-
-
Ranganna, K.1
Yousefipour, Z.2
Yatsu, F.M.3
-
11
-
-
0029804478
-
Sodium butyrate is a potent modulator of smooth muscle cell proliferation and gene expression
-
Feng P, Ge L, Akyhani N, et al. Sodium butyrate is a potent modulator of smooth muscle cell proliferation and gene expression. Cell Prolif. 1996; 29: 231–41.
-
(1996)
Cell Prolif
, vol.29
, pp. 231-241
-
-
Feng, P.1
Ge, L.2
Akyhani, N.3
-
12
-
-
84910037370
-
Involvement of the antioxidant effect and anti-inflammatory response in butyrate-inhibited vascular smooth muscle cell proliferation
-
Mathew OP, Ranganna K, Milton SG. Involvement of the antioxidant effect and anti-inflammatory response in butyrate-inhibited vascular smooth muscle cell proliferation. Pharmaceuticals (Basel). 2014; 7: 1008–27.
-
(2014)
Pharmaceuticals (Basel)
, vol.7
, pp. 1008-1027
-
-
Mathew, O.P.1
Ranganna, K.2
Milton, S.G.3
-
13
-
-
78649904991
-
Butyrate, an HDAC inhibitor, stimulates interplay between different posttranslational modifications of histone H3 and differently alters G1-specific cell cycle proteins in vascular smooth muscle cells
-
Mathew OP, Ranganna K, Yatsu FM. Butyrate, an HDAC inhibitor, stimulates interplay between different posttranslational modifications of histone H3 and differently alters G1-specific cell cycle proteins in vascular smooth muscle cells. Biomed Pharmacother. 2010; 64: 733–40.
-
(2010)
Biomed Pharmacother
, vol.64
, pp. 733-740
-
-
Mathew, O.P.1
Ranganna, K.2
Yatsu, F.M.3
-
14
-
-
33847227712
-
Trichostatin A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21(WAF1)
-
Okamoto H, Fujioka Y, Takahashi A, et al. Trichostatin A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21(WAF1). J Atheroscler Thromb. 2006; 13: 183–91.
-
(2006)
J Atheroscler Thromb
, vol.13
, pp. 183-191
-
-
Okamoto, H.1
Fujioka, Y.2
Takahashi, A.3
-
15
-
-
21644485961
-
The expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone code
-
Fish JE, Matouk CC, Rachlis A, et al. The expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone code. J Biol Chem. 2005; 280: 24824–38.
-
(2005)
J Biol Chem
, vol.280
, pp. 24824-24838
-
-
Fish, J.E.1
Matouk, C.C.2
Rachlis, A.3
-
16
-
-
18144416929
-
Role of histone deacetylation in cell-specific expression of endothelial nitric-oxide synthase
-
Gan Y, Shen YH, Wang J, et al. Role of histone deacetylation in cell-specific expression of endothelial nitric-oxide synthase. J Biol Chem. 2005; 280: 16467–75.
-
(2005)
J Biol Chem
, vol.280
, pp. 16467-16475
-
-
Gan, Y.1
Shen, Y.H.2
Wang, J.3
-
17
-
-
0036842460
-
Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis
-
Rossig L, Li H, Fisslthaler B, et al. Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circ Res. 2002; 91: 837–44.
-
(2002)
Circ Res
, vol.91
, pp. 837-844
-
-
Rossig, L.1
Li, H.2
Fisslthaler, B.3
-
18
-
-
34547107325
-
Nitric oxide in the cardiovascular and pulmonary circulation–a brief review of literatures and historical landmarks
-
Chen HI, Chang HR, Wu CY, et al. Nitric oxide in the cardiovascular and pulmonary circulation–a brief review of literatures and historical landmarks. Chin J Physiol. 2007; 50: 43–50.
-
(2007)
Chin J Physiol
, vol.50
, pp. 43-50
-
-
Chen, H.I.1
Chang, H.R.2
Wu, C.Y.3
-
19
-
-
75149192272
-
Nitric oxide, oxidative stress and inflammation in pulmonary arterial hypertension
-
Crosswhite P, Sun Z. Nitric oxide, oxidative stress and inflammation in pulmonary arterial hypertension. J Hypertens. 2010; 28: 201–12.
-
(2010)
J Hypertens
, vol.28
, pp. 201-212
-
-
Crosswhite, P.1
Sun, Z.2
-
21
-
-
0037249512
-
Endogenous endothelins and nitric oxide in hypoxic pulmonary vasoconstriction
-
Hubloue I, Biarent DAbdel Kafi S, et al. Endogenous endothelins and nitric oxide in hypoxic pulmonary vasoconstriction. Eur Respir J. 2003; 21: 19–24.
-
(2003)
Eur Respir J
, vol.21
, pp. 19-24
-
-
Hubloue, I.1
Biarent, D.2
Abdel Kafi, S.3
-
23
-
-
1942510459
-
Nitric oxide and other novel therapies for pulmonary hypertension
-
Napoli C, Loscalzo J. Nitric oxide and other novel therapies for pulmonary hypertension. J Cardiovasc Pharmacol Ther. 2004; 9: 1–8.
-
(2004)
J Cardiovasc Pharmacol Ther
, vol.9
, pp. 1-8
-
-
Napoli, C.1
Loscalzo, J.2
-
24
-
-
84902190893
-
Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation
-
De Pascali F, Hemann C, Samons K, et al. Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation. Biochemistry. 2014; 53: 3679–88.
-
(2014)
Biochemistry
, vol.53
, pp. 3679-3688
-
-
De Pascali, F.1
Hemann, C.2
Samons, K.3
-
25
-
-
84885484473
-
Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets?
-
Rochette L, Lorin J, Zeller M, et al. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? Pharmacol Ther. 2013; 140: 239–57.
-
(2013)
Pharmacol Ther
, vol.140
, pp. 239-257
-
-
Rochette, L.1
Lorin, J.2
Zeller, M.3
-
26
-
-
0033843280
-
eNOS gene transfer to vascular smooth muscle cells inhibits cell proliferation via upregulation of p27 and p21 and not apoptosis
-
Sato J, Nair K, Hiddinga J, et al. eNOS gene transfer to vascular smooth muscle cells inhibits cell proliferation via upregulation of p27 and p21 and not apoptosis. Cardiovasc Res. 2000; 47: 697–706.
-
(2000)
Cardiovasc Res
, vol.47
, pp. 697-706
-
-
Sato, J.1
Nair, K.2
Hiddinga, J.3
-
27
-
-
0032993545
-
NOS gene transfer inhibits expression of cell cycle regulatory molecules in vascular smooth muscle cells
-
Sharma RV, Tan E, Fang S, et al. NOS gene transfer inhibits expression of cell cycle regulatory molecules in vascular smooth muscle cells. Am J Physiol. 1999; 276: H1450–9.
-
(1999)
Am J Physiol
, vol.276
, pp. H1450-H1459
-
-
Sharma, R.V.1
Tan, E.2
Fang, S.3
-
28
-
-
2942718699
-
Exogenous nitric oxide upregulates p21(waf1/cip1) in pulmonary microvascular smooth muscle cells
-
Stotz WH, Li D, Johns RA. Exogenous nitric oxide upregulates p21(waf1/cip1) in pulmonary microvascular smooth muscle cells. J Vasc Res. 2004; 41: 211–9.
-
(2004)
J Vasc Res
, vol.41
, pp. 211-219
-
-
Stotz, W.H.1
Li, D.2
Johns, R.A.3
-
29
-
-
84871775342
-
Silencing of STIM1 attenuates hypoxia-induced PASMCs proliferation via inhibition of the SOC/Ca2+/NFAT pathway
-
Hou X, Chen J, Luo Y, et al. Silencing of STIM1 attenuates hypoxia-induced PASMCs proliferation via inhibition of the SOC/Ca2+/NFAT pathway. Respir Res. 2013; 14: 2–11.
-
(2013)
Respir Res
, vol.14
, pp. 2-11
-
-
Hou, X.1
Chen, J.2
Luo, Y.3
-
30
-
-
39149094293
-
Oxygen regulation of arterial smooth muscle cell proliferation and survival
-
Ray JB, Arab S, Deng Y, et al. Oxygen regulation of arterial smooth muscle cell proliferation and survival. Am J Physiol Heart Circ Physiol. 2008; 294: H839–52.
-
(2008)
Am J Physiol Heart Circ Physiol
, vol.294
, pp. H839-H852
-
-
Ray, J.B.1
Arab, S.2
Deng, Y.3
-
31
-
-
84923163384
-
Hypoxia stimulates the proliferation of neonatal rat vascular smooth muscle cells through activation of hypoxia-inducible factor-1alpha
-
Lv G, Li Y, Wang Z, et al. Hypoxia stimulates the proliferation of neonatal rat vascular smooth muscle cells through activation of hypoxia-inducible factor-1alpha. Int J Clin Exp Med. 2015; 8: 496–503.
-
(2015)
Int J Clin Exp Med
, vol.8
, pp. 496-503
-
-
Lv, G.1
Li, Y.2
Wang, Z.3
-
32
-
-
0029609198
-
Sodium butyrate inhibits platelet-derived growth factor-induced proliferation of vascular smooth muscle cells
-
Ranganna K, Joshi T, Yatsu FM. Sodium butyrate inhibits platelet-derived growth factor-induced proliferation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1995; 15: 2273–83.
-
(1995)
Arterioscler Thromb Vasc Biol
, vol.15
, pp. 2273-2283
-
-
Ranganna, K.1
Joshi, T.2
Yatsu, F.M.3
-
33
-
-
0031458495
-
Inhibition of platelet-derived growth factor BB-induced expression of glyceraldehyde-3-phosphate dehydrogenase by sodium butyrate in rat vascular smooth muscle cells
-
Ranganna K, Yatsu FM. Inhibition of platelet-derived growth factor BB-induced expression of glyceraldehyde-3-phosphate dehydrogenase by sodium butyrate in rat vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1997; 17: 3420–7.
-
(1997)
Arterioscler Thromb Vasc Biol
, vol.17
, pp. 3420-3427
-
-
Ranganna, K.1
Yatsu, F.M.2
-
34
-
-
0033997010
-
Butyrate inhibits proliferation-induced proliferating cell nuclear antigen expression (PCNA) in rat vascular smooth muscle cells
-
Ranganna K, Yatsu FM, Hayes BE, et al. Butyrate inhibits proliferation-induced proliferating cell nuclear antigen expression (PCNA) in rat vascular smooth muscle cells. Mol Cell Biochem. 2000; 205: 149–61.
-
(2000)
Mol Cell Biochem
, vol.205
, pp. 149-161
-
-
Ranganna, K.1
Yatsu, F.M.2
Hayes, B.E.3
-
35
-
-
27244443910
-
Butyrate, a gut-derived environmental signal, regulates tyrosine hydroxylase gene expression via a novel promoter element
-
Patel P, Nankova BB, LaGamma EF. Butyrate, a gut-derived environmental signal, regulates tyrosine hydroxylase gene expression via a novel promoter element. Brain Res Dev Brain Res. 2005; 160: 53–62.
-
(2005)
Brain Res Dev Brain Res
, vol.160
, pp. 53-62
-
-
Patel, P.1
Nankova, B.B.2
LaGamma, E.F.3
-
36
-
-
35748982083
-
Involvement of glutathione/glutathione S-transferase antioxidant system in butyrate-inhibited vascular smooth muscle cell proliferation
-
Ranganna K, Mathew OP, Yatsu FM, et al. Involvement of glutathione/glutathione S-transferase antioxidant system in butyrate-inhibited vascular smooth muscle cell proliferation. FEBS J. 2007; 274: 5962–78.
-
(2007)
FEBS J
, vol.274
, pp. 5962-5978
-
-
Ranganna, K.1
Mathew, O.P.2
Yatsu, F.M.3
-
37
-
-
62749197294
-
Effect of sodium butyrate on lung vascular TNFSF15 (TL1A) expression: differential expression patterns in pulmonary artery and microvascular endothelial cells
-
Safaya S, Klings ES, Odhiambo A, et al. Effect of sodium butyrate on lung vascular TNFSF15 (TL1A) expression: differential expression patterns in pulmonary artery and microvascular endothelial cells. Cytokine. 2009; 46: 72–8.
-
(2009)
Cytokine
, vol.46
, pp. 72-78
-
-
Safaya, S.1
Klings, E.S.2
Odhiambo, A.3
-
38
-
-
1842530955
-
Butyrate inhibits cytokine-induced VCAM-1 and ICAM-1 expression in cultured endothelial cells: the role of NF-kappaB and PPARalpha
-
Zapolska-Downar D, Siennicka A, Kaczmarczyk M, et al. Butyrate inhibits cytokine-induced VCAM-1 and ICAM-1 expression in cultured endothelial cells: the role of NF-kappaB and PPARalpha. J Nutr Biochem. 2004; 15: 220–8.
-
(2004)
J Nutr Biochem
, vol.15
, pp. 220-228
-
-
Zapolska-Downar, D.1
Siennicka, A.2
Kaczmarczyk, M.3
-
39
-
-
0036875930
-
Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension
-
Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis. 2002; 45: 173–202.
-
(2002)
Prog Cardiovasc Dis
, vol.45
, pp. 173-202
-
-
Jeffery, T.K.1
Morrell, N.W.2
-
40
-
-
84866539217
-
Differential cellular and molecular effects of butyrate and trichostatin a on vascular smooth muscle cells
-
Milton SG, Mathew OP, Yatsu FM, et al. Differential cellular and molecular effects of butyrate and trichostatin a on vascular smooth muscle cells. Pharmaceuticals (Basel). 2012; 5: 925–43.
-
(2012)
Pharmaceuticals (Basel)
, vol.5
, pp. 925-943
-
-
Milton, S.G.1
Mathew, O.P.2
Yatsu, F.M.3
-
41
-
-
72049083765
-
Trichostatin A enhances proliferation and migration of vascular smooth muscle cells by downregulating thioredoxin 1
-
Song S, Kang SW, Choi C. Trichostatin A enhances proliferation and migration of vascular smooth muscle cells by downregulating thioredoxin 1. Cardiovasc Res. 2010; 85: 241–9.
-
(2010)
Cardiovasc Res
, vol.85
, pp. 241-249
-
-
Song, S.1
Kang, S.W.2
Choi, C.3
-
42
-
-
84870915628
-
Pulmonary artery smooth muscle cell proliferation and migration in fetal lambs acclimatized to high-altitude long-term hypoxia: role of histone acetylation
-
Yang Q, Lu Z, Ramchandran R, et al. Pulmonary artery smooth muscle cell proliferation and migration in fetal lambs acclimatized to high-altitude long-term hypoxia: role of histone acetylation. Am J Physiol Lung Cell Mol Physiol. 2012; 303: L1001–10.
-
(2012)
Am J Physiol Lung Cell Mol Physiol
, vol.303
, pp. L1001-L1010
-
-
Yang, Q.1
Lu, Z.2
Ramchandran, R.3
-
43
-
-
34548456881
-
Dietary histone deacetylase inhibitors: from cells to mice to man
-
Dashwood RH, Ho E. Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol. 2007; 17: 363–9.
-
(2007)
Semin Cancer Biol
, vol.17
, pp. 363-369
-
-
Dashwood, R.H.1
Ho, E.2
-
44
-
-
84910039691
-
Histone deacetylase inhibition and dietary short-chain Fatty acids
-
Licciardi PV, Ververis K, Karagiannis TC. Histone deacetylase inhibition and dietary short-chain Fatty acids. ISRN Allergy. 2011; 2011: 869647–54.
-
(2011)
ISRN Allergy
, vol.2011
, pp. 869647-869654
-
-
Licciardi, P.V.1
Ververis, K.2
Karagiannis, T.C.3
-
45
-
-
33744990610
-
Dietary agents as histone deacetylase inhibitors
-
Myzak MC, Ho E, Dashwood RH. Dietary agents as histone deacetylase inhibitors. Mol Carcinog. 2006; 45: 443–6.
-
(2006)
Mol Carcinog
, vol.45
, pp. 443-446
-
-
Myzak, M.C.1
Ho, E.2
Dashwood, R.H.3
-
46
-
-
84870658312
-
Dietary regulation of histone acetylases and deacetylases for the prevention of metabolic diseases
-
Pham TX, Lee J. Dietary regulation of histone acetylases and deacetylases for the prevention of metabolic diseases. Nutrients. 2012; 4: 1868–86.
-
(2012)
Nutrients
, vol.4
, pp. 1868-1886
-
-
Pham, T.X.1
Lee, J.2
-
48
-
-
80054980812
-
Regulation of inflammation by short chain fatty acids
-
Vinolo MA, Rodrigues HG, Nachbar RT, et al. Regulation of inflammation by short chain fatty acids. Nutrients. 2011; 3: 858–76.
-
(2011)
Nutrients
, vol.3
, pp. 858-876
-
-
Vinolo, M.A.1
Rodrigues, H.G.2
Nachbar, R.T.3
-
49
-
-
12444321545
-
Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously
-
Kelly WK, Richon VM, O'Connor O, et al. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res. 2003; 9: 3578–88.
-
(2003)
Clin Cancer Res
, vol.9
, pp. 3578-3588
-
-
Kelly, W.K.1
Richon, V.M.2
O'Connor, O.3
-
50
-
-
69249114634
-
Suberoylanilide hydroxamic acid: a potential epigenetic therapeutic agent for lung fibrosis?
-
Wang Z, Chen C, Finger SN, et al. Suberoylanilide hydroxamic acid: a potential epigenetic therapeutic agent for lung fibrosis? Eur Respir J. 2009; 34: 145–55.
-
(2009)
Eur Respir J
, vol.34
, pp. 145-155
-
-
Wang, Z.1
Chen, C.2
Finger, S.N.3
-
51
-
-
84915745302
-
Review article: selective histone deacetylase isoforms as potential therapeutic targets in inflammatory bowel diseases
-
Felice C, Lewis A, Armuzzi A, et al. Review article: selective histone deacetylase isoforms as potential therapeutic targets in inflammatory bowel diseases. Aliment Pharmacol Ther. 2015; 41: 26–38.
-
(2015)
Aliment Pharmacol Ther
, vol.41
, pp. 26-38
-
-
Felice, C.1
Lewis, A.2
Armuzzi, A.3
-
52
-
-
84908051558
-
Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-beta1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats
-
Khan S, Jena G. Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-beta1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats. Food Chem Toxicol. 2014; 73: 127–39.
-
(2014)
Food Chem Toxicol
, vol.73
, pp. 127-139
-
-
Khan, S.1
Jena, G.2
-
53
-
-
84948963858
-
Suberoylanilide hydroxamic acid suppresses hepatic stellate cells activation by HMGB1 dependent reduction of NF-kappaB1
-
Wang W, Yan M, Ji Q, et al. Suberoylanilide hydroxamic acid suppresses hepatic stellate cells activation by HMGB1 dependent reduction of NF-kappaB1. PeerJ. 2015; 3: e1362–75.
-
(2015)
PeerJ
, vol.3
, pp. e1362-e1375
-
-
Wang, W.1
Yan, M.2
Ji, Q.3
-
54
-
-
84860832553
-
Reversal of pulmonary vascular remodeling in pulmonary hypertensive rats
-
Sluiter I, van Heijst A, Haasdijk R, et al. Reversal of pulmonary vascular remodeling in pulmonary hypertensive rats. Exp Mol Pathol. 2012; 93: 66–73.
-
(2012)
Exp Mol Pathol
, vol.93
, pp. 66-73
-
-
Sluiter, I.1
van Heijst, A.2
Haasdijk, R.3
-
55
-
-
84939430093
-
The reversal of pulmonary vascular remodeling through inhibition of p38 MAPK-alpha: a potential novel anti-inflammatory strategy in pulmonary hypertension
-
Church AC, Martin DH, Wadsworth R, et al. The reversal of pulmonary vascular remodeling through inhibition of p38 MAPK-alpha: a potential novel anti-inflammatory strategy in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2015; 309: L333–47.
-
(2015)
Am J Physiol Lung Cell Mol Physiol
, vol.309
, pp. L333-L347
-
-
Church, A.C.1
Martin, D.H.2
Wadsworth, R.3
-
56
-
-
33744944257
-
Hypoxia and hypoxia-inducible factor-1alpha promote growth factor-induced proliferation of human vascular smooth muscle cells
-
Schultz K, Fanburg BL, Beasley D. Hypoxia and hypoxia-inducible factor-1alpha promote growth factor-induced proliferation of human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2006; 290: H2528–34.
-
(2006)
Am J Physiol Heart Circ Physiol
, vol.290
, pp. H2528-H2534
-
-
Schultz, K.1
Fanburg, B.L.2
Beasley, D.3
-
57
-
-
84858724920
-
Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonary hypertension
-
Tajsic T, Morrell NW. Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonary hypertension. Compr Physiol. 2011; 1: 295–317.
-
(2011)
Compr Physiol
, vol.1
, pp. 295-317
-
-
Tajsic, T.1
Morrell, N.W.2
-
58
-
-
0030224894
-
Increased expression of PDGF and c-myc genes in lungs and pulmonary arteries of pulmonary hypertensive rats induced by hypoxia
-
Cai Y, Han M, Luo L, et al. Increased expression of PDGF and c-myc genes in lungs and pulmonary arteries of pulmonary hypertensive rats induced by hypoxia. Chin Med Sci J. 1996; 11: 152–6.
-
(1996)
Chin Med Sci J
, vol.11
, pp. 152-156
-
-
Cai, Y.1
Han, M.2
Luo, L.3
-
59
-
-
84857285894
-
Hypoxia differentially regulates arterial and venous smooth muscle cell proliferation via PDGFR-beta and VEGFR-2 expression
-
Chanakira A, Dutta R, Charboneau R, et al. Hypoxia differentially regulates arterial and venous smooth muscle cell proliferation via PDGFR-beta and VEGFR-2 expression. Am J Physiol Heart Circ Physiol. 2012; 302: H1173–84.
-
(2012)
Am J Physiol Heart Circ Physiol
, vol.302
, pp. H1173-H1184
-
-
Chanakira, A.1
Dutta, R.2
Charboneau, R.3
-
60
-
-
84863503711
-
Hypoxic pulmonary hypertension in mice with constitutively active platelet-derived growth factor receptor-beta
-
Dahal BK, Heuchel R, Pullamsetti SS, et al. Hypoxic pulmonary hypertension in mice with constitutively active platelet-derived growth factor receptor-beta. Pulm Circ. 2011; 1: 259–68.
-
(2011)
Pulm Circ
, vol.1
, pp. 259-268
-
-
Dahal, B.K.1
Heuchel, R.2
Pullamsetti, S.S.3
-
61
-
-
79954585192
-
Hypoxia enhances platelet-derived growth factor signaling in the pulmonary vasculature by down-regulation of protein tyrosine phosphatases
-
ten Freyhaus H, Dagnell M, Leuchs M, et al. Hypoxia enhances platelet-derived growth factor signaling in the pulmonary vasculature by down-regulation of protein tyrosine phosphatases. Am J Respir Crit Care Med. 2011; 183: 1092–102.
-
(2011)
Am J Respir Crit Care Med
, vol.183
, pp. 1092-1102
-
-
ten Freyhaus, H.1
Dagnell, M.2
Leuchs, M.3
-
62
-
-
84864002983
-
Platelet-derived growth factor (PDGF) induces pulmonary vascular remodeling through 15-LO/15-HETE pathway under hypoxic condition
-
Zhang L, Ma J, Shen T, et al. Platelet-derived growth factor (PDGF) induces pulmonary vascular remodeling through 15-LO/15-HETE pathway under hypoxic condition. Cell Signal. 2012; 24: 1931–9.
-
(2012)
Cell Signal
, vol.24
, pp. 1931-1939
-
-
Zhang, L.1
Ma, J.2
Shen, T.3
-
63
-
-
0032825073
-
Hypoxia-induced release of peptide growth factors from neonatal porcine pulmonary artery smooth muscle cells
-
Ambalavanan N, Bulger A, Philips IJ. Hypoxia-induced release of peptide growth factors from neonatal porcine pulmonary artery smooth muscle cells. Biol Neonate. 1999; 76: 311–9.
-
(1999)
Biol Neonate
, vol.76
, pp. 311-319
-
-
Ambalavanan, N.1
Bulger, A.2
Philips, I.J.3
-
64
-
-
0032229420
-
Platelet-derived growth factor (PDGF) mRNA expression of porcine pulmonary artery smooth muscle cells induced by hypoxic endothelial cells conditioned medium
-
Li F, Zhang Y, Che D. Platelet-derived growth factor (PDGF) mRNA expression of porcine pulmonary artery smooth muscle cells induced by hypoxic endothelial cells conditioned medium. Zhonghua Bing Li Xue Za Zhi. 1998; 27: 425–8.
-
(1998)
Zhonghua Bing Li Xue Za Zhi
, vol.27
, pp. 425-428
-
-
Li, F.1
Zhang, Y.2
Che, D.3
-
65
-
-
81255168254
-
Hypoxia and nitric oxide exposure promote apoptotic signaling in contractile pulmonary arterial smooth muscle but not in pulmonary epithelium
-
Postolow F, Fediuk J, Nolette N, et al. Hypoxia and nitric oxide exposure promote apoptotic signaling in contractile pulmonary arterial smooth muscle but not in pulmonary epithelium. Pediatr Pulmonol. 2011; 46: 1194–208.
-
(2011)
Pediatr Pulmonol
, vol.46
, pp. 1194-1208
-
-
Postolow, F.1
Fediuk, J.2
Nolette, N.3
-
66
-
-
84888198407
-
Pulmonary hypertension due to lung disease and/or hypoxia
-
Nathan SD, Hassoun PM. Pulmonary hypertension due to lung disease and/or hypoxia. Clin Chest Med. 2013; 34: 695–705.
-
(2013)
Clin Chest Med
, vol.34
, pp. 695-705
-
-
Nathan, S.D.1
Hassoun, P.M.2
-
67
-
-
84946489319
-
eNOS transfection of adipose-derived stem cells yields bioactive nitric oxide production and improved results in vascular tissue engineering
-
McIlhenny S, Zhang P, Tulenko T, et al. eNOS transfection of adipose-derived stem cells yields bioactive nitric oxide production and improved results in vascular tissue engineering. J Tissue Eng Regen Med. 2015; 9: 1277–85.
-
(2015)
J Tissue Eng Regen Med
, vol.9
, pp. 1277-1285
-
-
McIlhenny, S.1
Zhang, P.2
Tulenko, T.3
-
68
-
-
0037213571
-
Mechanism of eNOS gene transfer inhibition of vascular smooth muscle cell proliferation
-
D'Souza FM, Sparks RL, Chen H, et al. Mechanism of eNOS gene transfer inhibition of vascular smooth muscle cell proliferation. Am J Physiol Cell Physiol. 2003; 284: C191–9.
-
(2003)
Am J Physiol Cell Physiol
, vol.284
, pp. C191-C199
-
-
D'Souza, F.M.1
Sparks, R.L.2
Chen, H.3
-
69
-
-
0031443418
-
Expression and function of recombinant endothelial NO synthase in coronary artery smooth muscle cells
-
Kullo IJ, Schwartz RS, Pompili VJ, et al. Expression and function of recombinant endothelial NO synthase in coronary artery smooth muscle cells. Arterioscler Thromb Vasc Biol. 1997; 17: 2405–12.
-
(1997)
Arterioscler Thromb Vasc Biol
, vol.17
, pp. 2405-2412
-
-
Kullo, I.J.1
Schwartz, R.S.2
Pompili, V.J.3
|