메뉴 건너뛰기




Volumn 52, Issue 7, 2017, Pages 434-440

Deep learning in mammography diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer

Author keywords

Artificial intelligence; Artificial neural network; Breast cancer; Deep learning; Diagnostic accuracy; Machine learning; Mammography

Indexed keywords

ADULT; AGED; ARTICLE; ARTIFICIAL NEURAL NETWORK; BREAST CARCINOMA; BREAST DENSITY; COLLOID CARCINOMA; CONTROLLED STUDY; CORRELATION COEFFICIENT; DIAGNOSTIC ACCURACY; DIAGNOSTIC TEST ACCURACY STUDY; HISTOLOGY; HUMAN; IMAGE ANALYSIS; IMAGE PROCESSING; IMAGING SOFTWARE; INTRADUCTAL CARCINOMA; LOBULAR CARCINOMA; MAJOR CLINICAL STUDY; MAMMOGRAPHY; PRIORITY JOURNAL; RECEIVER OPERATING CHARACTERISTIC; RETROSPECTIVE STUDY; SENSITIVITY AND SPECIFICITY; BREAST; BREAST TUMOR; DIAGNOSTIC IMAGING; FEMALE; FOLLOW UP; MACHINE LEARNING; MIDDLE AGED; PREVALENCE; PROCEDURES; REPRODUCIBILITY; VERY ELDERLY;

EID: 85013092765     PISSN: 00209996     EISSN: 15360210     Source Type: Journal    
DOI: 10.1097/RLI.0000000000000358     Document Type: Article
Times cited : (313)

References (31)
  • 1
    • 84939507796 scopus 로고    scopus 로고
    • The changing world of breast cancer: A radiologist's perspective
    • Kuhl CK. The changing world of breast cancer: a radiologist's perspective. Invest Radiol. 2015;50:615-628.
    • (2015) Invest Radiol , vol.50 , pp. 615-628
    • Kuhl, C.K.1
  • 2
    • 27344458270 scopus 로고    scopus 로고
    • Diagnostic performance of digital versus film mammography for breast-cancer screening
    • Pisano ED, Gatsonis C, Hendrick E, et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med. 2005;353: 1773-1783.
    • (2005) N Engl J Med , vol.353 , pp. 1773-1783
    • Pisano, E.D.1    Gatsonis, C.2    Hendrick, E.3
  • 3
    • 80054739549 scopus 로고    scopus 로고
    • Cumulative probability of falsepositive recall or biopsy recommendation after 10 years of screening mammography: A cohort study
    • Hubbard RA, Kerlikowske K, Flowers CI, et al. Cumulative probability of falsepositive recall or biopsy recommendation after 10 years of screening mammography: a cohort study. Ann Intern Med. 2011;155:481-492.
    • (2011) Ann Intern Med , vol.155 , pp. 481-492
    • Hubbard, R.A.1    Kerlikowske, K.2    Flowers, C.I.3
  • 4
    • 78549261131 scopus 로고    scopus 로고
    • False-positive results in the randomized controlled trial of mammographic screening from age 40 ("Age" trial)
    • Age Trial Management GroupJohns LE, Moss SM. False-positive results in the randomized controlled trial of mammographic screening from age 40 ("Age" trial). Cancer Epidemiol Biomarkers Prev. 2010;19:2758-2764.
    • (2010) Cancer Epidemiol Biomarkers Prev , vol.19 , pp. 2758-2764
    • Johns, L.E.1    Moss, S.M.2
  • 5
    • 84886420800 scopus 로고    scopus 로고
    • Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening
    • Haas BM, Kalra V, Geisel J, et al. Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening. Radiology. 2013;269:694-700.
    • (2013) Radiology , vol.269 , pp. 694-700
    • Haas, B.M.1    Kalra, V.2    Geisel, J.3
  • 6
    • 85020878499 scopus 로고    scopus 로고
    • Comparison of the detection rate of simulated microcalcifications in full-field digital mammography, digital breast tomosynthesis, and synthetically reconstructed 2-dimensional images performed with 2 different digital x-ray mammography systems
    • [Epub ahead of print]
    • Peters S, Hellmich M, Stork A, et al. Comparison of the detection rate of simulated microcalcifications in full-field digital mammography, digital breast tomosynthesis, and synthetically reconstructed 2-dimensional images performed with 2 different digital x-ray mammography systems. Invest Radiol. 2016. [Epub ahead of print].
    • (2016) Invest Radiol
    • Peters, S.1    Hellmich, M.2    Stork, A.3
  • 7
    • 78149405242 scopus 로고    scopus 로고
    • Meta-analyses of the effect of false-positive mammograms on generic and specific psychosocial outcomes
    • Salz T, Richman AR, Brewer NT. Meta-analyses of the effect of false-positive mammograms on generic and specific psychosocial outcomes. Psychooncology. 2010;19:1026-1034.
    • (2010) Psychooncology , vol.19 , pp. 1026-1034
    • Salz, T.1    Richman, A.R.2    Brewer, N.T.3
  • 8
    • 84875315414 scopus 로고    scopus 로고
    • Long-term psychosocial consequences of false-positive screening mammography
    • Brodersen J, Siersma VD. Long-term psychosocial consequences of false-positive screening mammography. Ann Fam Med. 2013;11:106-115.
    • (2013) Ann Fam Med , vol.11 , pp. 106-115
    • Brodersen, J.1    Siersma, V.D.2
  • 9
    • 84977570561 scopus 로고    scopus 로고
    • A preliminary study on breast cancer risk analysis using deep neural network
    • Cham, Switzerland: Springer International Publishing
    • Sun W, Tseng T-LB, Zheng Bin, et al. A preliminary study on breast cancer risk analysis using deep neural network. In: Breast Imaging. Vol 9699. Lecture Notes in Computer Science. Cham, Switzerland: Springer International Publishing; 2016:385-391.
    • (2016) Breast Imaging. Vol 9699. Lecture Notes in Computer Science , pp. 385-391
    • Sun, W.1    T-Lb, T.2    Bin, Z.3
  • 10
    • 33750687026 scopus 로고    scopus 로고
    • ACR BI-RADS® Atlas, Breast imaging reporting and data system
    • Sickles EA, D'Orsi CJ, Bassett LW, et al. ACR BI-RADS® Atlas, Breast imaging reporting and data system. J Am Coll Radiol. 2013:39-48.
    • (2013) J Am Coll Radiol , pp. 39-48
    • Sickles, E.A.1    D'Orsi, C.J.2    Bassett, L.W.3
  • 12
    • 84880229711 scopus 로고    scopus 로고
    • An evaluation of image descriptors combined with clinical data for breast cancer diagnosis
    • Moura DC, Guevara López MA. An evaluation of image descriptors combined with clinical data for breast cancer diagnosis. Int J Comput Assist Radiol Surg. 2013;8:561-574.
    • (2013) Int J Comput Assist Radiol Surg , vol.8 , pp. 561-574
    • Moura, D.C.1    Guevara López, M.A.2
  • 13
    • 84873050658 scopus 로고    scopus 로고
    • Discovering mammography-based machine learning classifiers for breast cancer diagnosis
    • Ramos-Pollán R, Guevara-López MA, Suárez-Ortega C, et al. Discovering mammography-based machine learning classifiers for breast cancer diagnosis. J Med Syst. 2012;36:2259-2269.
    • (2012) J Med Syst , vol.36 , pp. 2259-2269
    • Ramos-Pollán, R.1    Guevara-López, M.A.2    Suárez-Ortega, C.3
  • 14
    • 34249885738 scopus 로고    scopus 로고
    • Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference
    • Ho DE, Imai K, King G, et al. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Analysis. 2007;15:199-236.
    • (2007) Political Analysis , vol.15 , pp. 199-236
    • Ho, D.E.1    Imai, K.2    King, G.3
  • 18
    • 34848816179 scopus 로고    scopus 로고
    • To recognize shapes, first learn to generate images
    • Hinton GE. To recognize shapes, first learn to generate images. Prog Brain Res. 2007;165:535-547.
    • (2007) Prog Brain Res , vol.165 , pp. 535-547
    • Hinton, G.E.1
  • 19
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18:1527-1554.
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 20
    • 48249153186 scopus 로고
    • Intraclass correlations: Uses in assessing rater reliability
    • Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420-428.
    • (1979) Psychol Bull , vol.86 , pp. 420-428
    • Shrout, P.E.1    Fleiss, J.L.2
  • 21
    • 0019369245 scopus 로고
    • Developing criteria for establishing interrater reliability of specific items: Applications to assessment of adaptive behavior
    • Cicchetti DV, Sparrow SA. Developing criteria for establishing interrater reliability of specific items: applications to assessment of adaptive behavior. Am J Ment Defic. 1981;86:127-137.
    • (1981) Am J Ment Defic , vol.86 , pp. 127-137
    • Cicchetti, D.V.1    Sparrow, S.A.2
  • 22
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837-845.
    • (1988) Biometrics , vol.44 , pp. 837-845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 23
    • 0030966854 scopus 로고    scopus 로고
    • Nonparametric analysis of clustered ROC curve data
    • Obuchowski NA. Nonparametric analysis of clustered ROC curve data. Biometrics. 1997;53:567-578.
    • (1997) Biometrics , vol.53 , pp. 567-578
    • Obuchowski, N.A.1
  • 25
    • 84968572894 scopus 로고    scopus 로고
    • Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
    • Kallenberg M, Petersen K, Nielsen M, et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging. 2016;35:1322-1331.
    • (2016) IEEE Trans Med Imaging , vol.35 , pp. 1322-1331
    • Kallenberg, M.1    Petersen, K.2    Nielsen, M.3
  • 27
    • 84961589582 scopus 로고    scopus 로고
    • A new method of detecting micro-calcification clusters in mammograms using contourlet transform and non-linking simplified PCNN
    • Guo Y, Dong M, Yang Z, et al. A new method of detecting micro-calcification clusters in mammograms using contourlet transform and non-linking simplified PCNN. Comput Methods Programs Biomed. 2016;130:31-45.
    • (2016) Comput Methods Programs Biomed , vol.130 , pp. 31-45
    • Guo, Y.1    Dong, M.2    Yang, Z.3
  • 28
    • 78751640767 scopus 로고    scopus 로고
    • Multicenter surveillance of women at high genetic breast cancer risk using mammography, ultrasonography, and contrastenhanced magnetic resonance imaging (the high breast cancer risk Italian 1 study): Final results
    • Sardanelli F, Podo F, Santoro F, et al. Multicenter surveillance of women at high genetic breast cancer risk using mammography, ultrasonography, and contrastenhanced magnetic resonance imaging (the high breast cancer risk Italian 1 study): final results. Invest Radiol. 2011;46:94-105.
    • (2011) Invest Radiol , vol.46 , pp. 94-105
    • Sardanelli, F.1    Podo, F.2    Santoro, F.3
  • 29
    • 84998813223 scopus 로고    scopus 로고
    • Towards localization of malignant sites of asymmetry across bilateral mammograms
    • Casti P, Mencattini A, Salmeri M, et al. Towards localization of malignant sites of asymmetry across bilateral mammograms. Comput Methods Programs Biomed. 2017;140:11-18.
    • (2017) Comput Methods Programs Biomed , vol.140 , pp. 11-18
    • Casti, P.1    Mencattini, A.2    Salmeri, M.3
  • 30
    • 84965136278 scopus 로고    scopus 로고
    • Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation
    • La Jolla, CA: Neural Information Processing Systems (NIPS) Foundation
    • Stollenga MF, Byeon W, Liwicki M, et al. Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation. In: Advances in Neural Information Processing Systems. La Jolla, CA: Neural Information Processing Systems (NIPS) Foundation; 2015:2998-3006.
    • (2015) Advances in Neural Information Processing Systems , pp. 2998-3006
    • Stollenga, M.F.1    Byeon, W.2    Liwicki, M.3
  • 31
    • 84957827913 scopus 로고    scopus 로고
    • Prediction model for extensive ductal carcinoma in situ around early-stage invasive breast cancer
    • Knuttel FM, van der Velden BH, Loo CE, et al. Prediction model for extensive ductal carcinoma in situ around early-stage invasive breast cancer. Invest Radiol. 2016;51:462-468.
    • (2016) Invest Radiol , vol.51 , pp. 462-468
    • Knuttel, F.M.1    Van Der Velden, B.H.2    Loo, C.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.