-
1
-
-
84857790848
-
The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC)
-
Dawson CW, Port RJ, Young LS. 2012. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol 22:144-153. https://doi.org/10.1016/j.semcancer.2012.01.004.
-
(2012)
Semin Cancer Biol
, vol.22
, pp. 144-153
-
-
Dawson, C.W.1
Port, R.J.2
Young, L.S.3
-
2
-
-
33847333836
-
Signal transduction by the Epstein-Barr virus oncogene latent membrane protein 1 (LMP1)
-
Kieser A. 2007. Signal transduction by the Epstein-Barr virus oncogene latent membrane protein 1 (LMP1). Signal Transduct 7:20-33. https://doi.org/10.1002/sita.200600116.
-
(2007)
Signal Transduct
, vol.7
, pp. 20-33
-
-
Kieser, A.1
-
3
-
-
0041422143
-
Epstein-Barr virus latent membrane protein 1: structure and functions
-
Li HP, Chang YS. 2003. Epstein-Barr virus latent membrane protein 1: structure and functions. J Biomed Sci 10:490-504. https://doi.org/10.1007/BF02256110.
-
(2003)
J Biomed Sci
, vol.10
, pp. 490-504
-
-
Li, H.P.1
Chang, Y.S.2
-
4
-
-
56949099838
-
Multiple roles of LMP1 in Epstein-Barr virus induced immune escape
-
Middeldorp JM, Pegtel DM. 2008. Multiple roles of LMP1 in Epstein-Barr virus induced immune escape. Semin Cancer Biol 18:388-396. https://doi.org/10.1016/j.semcancer.2008.10.004.
-
(2008)
Semin Cancer Biol
, vol.18
, pp. 388-396
-
-
Middeldorp, J.M.1
Pegtel, D.M.2
-
5
-
-
84934436278
-
LMP1 TRAFficking activates growth and survival pathways
-
Soni V, Cahir-McFarland E, Kieff E. 2007. LMP1 TRAFficking activates growth and survival pathways. Adv Exp Med Biol 597:173-187. https://doi.org/10.1007/978-0-387-70630-6_14.
-
(2007)
Adv Exp Med Biol
, vol.597
, pp. 173-187
-
-
Soni, V.1
Cahir-McFarland, E.2
Kieff, E.3
-
6
-
-
80052284504
-
IRF7: activation, regulation, modification, and function
-
Ning S, Pagano J, Barber G. 2011. IRF7: activation, regulation, modification, and function. Genes Immun 12:399-414. https://doi.org/10.1038/gene.2011.21.
-
(2011)
Genes Immun
, vol.12
, pp. 399-414
-
-
Ning, S.1
Pagano, J.2
Barber, G.3
-
7
-
-
8644256751
-
Interferon regulatory factor 7 is associated with Epstein-Barr virus-transformed central nervous system lymphoma and has oncogenic properties
-
Zhang L, Zhang J, Lambert Q, Der CJ, Del Valle L, Miklossy J, Khalili K, Zhou Y, Pagano JS. 2004. Interferon regulatory factor 7 is associated with Epstein-Barr virus-transformed central nervous system lymphoma and has oncogenic properties. J Virol 78:12987-12995. https://doi.org/10.1128/JVI.78.23.12987-12995.2004.
-
(2004)
J Virol
, vol.78
, pp. 12987-12995
-
-
Zhang, L.1
Zhang, J.2
Lambert, Q.3
Der, C.J.4
Del Valle, L.5
Miklossy, J.6
Khalili, K.7
Zhou, Y.8
Pagano, J.S.9
-
8
-
-
13744259225
-
Regulation of expression of the Epstein-Barr virus BamHI-A rightward transcripts
-
Chen H, Huang J, Wu FY, Liao G, Hutt-Fletcher L, Hayward SD. 2005. Regulation of expression of the Epstein-Barr virus BamHI-A rightward transcripts. J Virol 79:1724-1733. https://doi.org/10.1128/JVI.79.3.1724-1733.2005.
-
(2005)
J Virol
, vol.79
, pp. 1724-1733
-
-
Chen, H.1
Huang, J.2
Wu, F.Y.3
Liao, G.4
Hutt-Fletcher, L.5
Hayward, S.D.6
-
9
-
-
36049003106
-
Modulation of LMP1 protein expression by EBV-encoded microRNAs
-
Lo AKF, To KF, Lo KW, Lung RWM, Hui JWY, Liao G, Hayward SD. 2007. Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci U S A 104:16164-16169. https://doi.org/10.1073/pnas.0702896104.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 16164-16169
-
-
Lo, A.K.F.1
To, K.F.2
Lo, K.W.3
Lung, R.W.M.4
Hui, J.W.Y.5
Liao, G.6
Hayward, S.D.7
-
10
-
-
84857788528
-
The role of miRNAs and EBV BARTs in NPC
-
Marquitz AR, Raab-Traub N. 2012. The role of miRNAs and EBV BARTs in NPC. Semin Cancer Biol 22:166-172. https://doi.org/10.1016/j.semcancer.2011.12.001.
-
(2012)
Semin Cancer Biol
, vol.22
, pp. 166-172
-
-
Marquitz, A.R.1
Raab-Traub, N.2
-
11
-
-
34147208226
-
IRF7 is activated by a viral oncoprotein through RIP-dependent ubiquitination
-
Huye LE, Ning S, Kelliher M, Pagano JS. 2007. IRF7 is activated by a viral oncoprotein through RIP-dependent ubiquitination. Mol Cell Biol 27: 2910-2918. https://doi.org/10.1128/MCB.02256-06.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 2910-2918
-
-
Huye, L.E.1
Ning, S.2
Kelliher, M.3
Pagano, J.S.4
-
12
-
-
53449102964
-
TRAF6 and the three C-terminal lysine sites on IRF7 are required for its ubiquitinationmediated activation by the tumor necrosis factor receptor family member Latent Membrane Protein 1
-
Ning S, Campos AD, Darnay B, Bentz G, Pagano JS. 2008. TRAF6 and the three C-terminal lysine sites on IRF7 are required for its ubiquitinationmediated activation by the tumor necrosis factor receptor family member Latent Membrane Protein 1. Mol Cell Biol 28:6536-6546. https://doi.org/10.1128/MCB.00785-08.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 6536-6546
-
-
Ning, S.1
Campos, A.D.2
Darnay, B.3
Bentz, G.4
Pagano, J.S.5
-
13
-
-
57449104909
-
IRF7 activation by Epstein-Barr virus latent membrane protein 1 requires localization at activation sites and TRAF6, but not TRAF2 or TRAF3
-
Song YJ, Izumi KM, Shinners NP, Gewurz BE, Kieff E. 2008. IRF7 activation by Epstein-Barr virus latent membrane protein 1 requires localization at activation sites and TRAF6, but not TRAF2 or TRAF3. Proc Natl Acad Sci U S A 105:18448-18453. https://doi.org/10.1073/pnas.0809933105.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 18448-18453
-
-
Song, Y.J.1
Izumi, K.M.2
Shinners, N.P.3
Gewurz, B.E.4
Kieff, E.5
-
14
-
-
0035202289
-
Intracellular signaling molecules activated by Epstein-Barr virus for induction of interferon regulatory factor 7
-
Zhang L, Wu L, Hong K, Pagano JS. 2001. Intracellular signaling molecules activated by Epstein-Barr virus for induction of interferon regulatory factor 7. J Virol 75:12393-12401. https://doi.org/10.1128/JVI.75.24.12393-12401.2001.
-
(2001)
J Virol
, vol.75
, pp. 12393-12401
-
-
Zhang, L.1
Wu, L.2
Hong, K.3
Pagano, J.S.4
-
15
-
-
0033985891
-
Interferon regulatory factor 7 is induced by Epstein-Barr virus latent membrane protein 1
-
Zhang L, Pagano JS. 2000. Interferon regulatory factor 7 is induced by Epstein-Barr virus latent membrane protein 1. J Virol 74:1061-1068. https://doi.org/10.1128/JVI.74.3.1061-1068.2000.
-
(2000)
J Virol
, vol.74
, pp. 1061-1068
-
-
Zhang, L.1
Pagano, J.S.2
-
16
-
-
84908242388
-
Regulation of HTLV-1 tax stability, cellular trafficking and NF-κB activation by the ubiquitin-proteasome pathway
-
Lavorgna A, Harhaj E. 2014. Regulation of HTLV-1 tax stability, cellular trafficking and NF-κB activation by the ubiquitin-proteasome pathway. Viruses 6:3925. https://doi.org/10.3390/v6103925.
-
(2014)
Viruses
, vol.6
, pp. 3925
-
-
Lavorgna, A.1
Harhaj, E.2
-
17
-
-
84912568177
-
Hepatitis B virus HBx protein interactions with the ubiquitin proteasome system
-
Minor M, Slagle B. 2014. Hepatitis B virus HBx protein interactions with the ubiquitin proteasome system. Viruses 6:4683. https://doi.org/10.3390/v6114683.
-
(2014)
Viruses
, vol.6
, pp. 4683
-
-
Minor, M.1
Slagle, B.2
-
18
-
-
84941595718
-
Viral mimicry to usurp ubiquitin and SUMO host pathways
-
Wimmer P, Schreiner S. 2015. Viral mimicry to usurp ubiquitin and SUMO host pathways. Viruses 7:4854-4872. https://doi.org/10.3390/v7092849.
-
(2015)
Viruses
, vol.7
, pp. 4854-4872
-
-
Wimmer, P.1
Schreiner, S.2
-
19
-
-
84983027825
-
Manipulation of ubiquitin/SUMO pathways in human herpesviruses infection
-
Gan J, Qiao N, Strahan R, Zhu C, Liu L, Verma SC, Wei F, Cai Q. 2016. Manipulation of ubiquitin/SUMO pathways in human herpesviruses infection. Rev Med Virol 26:435-445. https://doi.org/10.1002/rmv.1900.
-
(2016)
Rev Med Virol
, vol.26
, pp. 435-445
-
-
Gan, J.1
Qiao, N.2
Strahan, R.3
Zhu, C.4
Liu, L.5
Verma, S.C.6
Wei, F.7
Cai, Q.8
-
20
-
-
38449112548
-
Role of the ubiquitin system and tumor viruses in AIDS-related cancer
-
Shackelford J, Pagano J. 2007. Role of the ubiquitin system and tumor viruses in AIDS-related cancer. BMC Biochem 8:S8. https://doi.org/10.1186/1471-2091-8-S1-S8.
-
(2007)
BMC Biochem
, vol.8
, pp. S8
-
-
Shackelford, J.1
Pagano, J.2
-
21
-
-
77952716624
-
The A20 deubiquitinase activity negatively regulates LMP1 activation of IRF7
-
Ning S, Pagano J. 2010. The A20 deubiquitinase activity negatively regulates LMP1 activation of IRF7. J Virol 84:6130-6138. https://doi.org/10.1128/JVI.00364-10.
-
(2010)
J Virol
, vol.84
, pp. 6130-6138
-
-
Ning, S.1
Pagano, J.2
-
22
-
-
84905036773
-
Linear ubiquitin chains: NF-kappaB signalling, cell death and beyond
-
Iwai K, Fujita H, Sasaki Y. 2014. Linear ubiquitin chains: NF-kappaB signalling, cell death and beyond. Nat Rev Mol Cell Biol 15:503-508. https://doi.org/10.1038/nrm3836.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 503-508
-
-
Iwai, K.1
Fujita, H.2
Sasaki, Y.3
-
23
-
-
84872820481
-
Linear ubiquitination: a newly discovered regulator of cell signalling
-
Rieser E, Cordier SM, Walczak H. 2013. Linear ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem Sci 38:94-102. https://doi.org/10.1016/j.tibs.2012.11.007.
-
(2013)
Trends Biochem Sci
, vol.38
, pp. 94-102
-
-
Rieser, E.1
Cordier, S.M.2
Walczak, H.3
-
24
-
-
84885339072
-
Linear ubiquitination-mediated NF-kappaB regulation and its related disorders
-
Tokunaga F. 2013. Linear ubiquitination-mediated NF-kappaB regulation and its related disorders. J Biochem 154:313-323. https://doi.org/10.1093/jb/mvt079.
-
(2013)
J Biochem
, vol.154
, pp. 313-323
-
-
Tokunaga, F.1
-
25
-
-
84867905831
-
Linear ubiquitination: a novel NF-kappaB regulatory mechanism for inflammatory and immune responses by the LUBAC ubiquitin ligase complex
-
Tokunaga F, Iwai K. 2012. Linear ubiquitination: a novel NF-kappaB regulatory mechanism for inflammatory and immune responses by the LUBAC ubiquitin ligase complex. Endocr J 59:641-652. https://doi.org/10.1507/endocrj.EJ12-0148.
-
(2012)
Endocr J
, vol.59
, pp. 641-652
-
-
Tokunaga, F.1
Iwai, K.2
-
26
-
-
84931064658
-
Linear ubiquitination in immunity
-
Shimizu Y, Taraborrelli L, Walczak H. 2015. Linear ubiquitination in immunity. Immunol Rev 266:190-207. https://doi.org/10.1111/imr.12309.
-
(2015)
Immunol Rev
, vol.266
, pp. 190-207
-
-
Shimizu, Y.1
Taraborrelli, L.2
Walczak, H.3
-
27
-
-
84931055813
-
Linear ubiquitination signals in adaptive immune responses
-
Ikeda F. 2015. Linear ubiquitination signals in adaptive immune responses. Immunol Rev 266:222-236. https://doi.org/10.1111/imr.12300.
-
(2015)
Immunol Rev
, vol.266
, pp. 222-236
-
-
Ikeda, F.1
-
28
-
-
79953239980
-
SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis
-
Ikeda F, Deribe YL, Skanland SS, Stieglitz B, Grabbe C, Franz-Wachtel M, van Wijk SJL, Goswami P, Nagy V, Terzic J, Tokunaga F, Androulidaki A, Nakagawa T, Pasparakis M, Iwai K, Sundberg JP, Schaefer L, Rittinger K, Macek B, Dikic I. 2011. SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 471:637-641. https://doi.org/10.1038/nature09814.
-
(2011)
Nature
, vol.471
, pp. 637-641
-
-
Ikeda, F.1
Deribe, Y.L.2
Skanland, S.S.3
Stieglitz, B.4
Grabbe, C.5
Franz-Wachtel, M.6
van Wijk, S.J.L.7
Goswami, P.8
Nagy, V.9
Terzic, J.10
Tokunaga, F.11
Androulidaki, A.12
Nakagawa, T.13
Pasparakis, M.14
Iwai, K.15
Sundberg, J.P.16
Schaefer, L.17
Rittinger, K.18
Macek, B.19
Dikic, I.20
more..
-
29
-
-
79953237668
-
SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex
-
Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, Sakata Si Tanaka K, Nakano H, Iwai K. 2011. SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature 471:633-636. https://doi.org/10.1038/nature09815.
-
(2011)
Nature
, vol.471
, pp. 633-636
-
-
Tokunaga, F.1
Nakagawa, T.2
Nakahara, M.3
Saeki, Y.4
Taniguchi, M.5
Sakata Si Tanaka, K.6
Nakano, H.7
Iwai, K.8
-
30
-
-
34447118188
-
RBCK1 negatively regulates Tumor Necrosis Factor-and Interleukin-1-triggered NF-kappaB activation by targeting TAB2/3 for degradation
-
Tian Y, Zhang Y, Zhong B, Wang YY, Diao FC, Wang RP, Zhang M, Chen DY, Zhai ZH, Shu HB. 2007. RBCK1 negatively regulates Tumor Necrosis Factor-and Interleukin-1-triggered NF-kappaB activation by targeting TAB2/3 for degradation. J Biol Chem 282:16776-16782. https://doi.org/10.1074/jbc.M701913200.
-
(2007)
J Biol Chem
, vol.282
, pp. 16776-16782
-
-
Tian, Y.1
Zhang, Y.2
Zhong, B.3
Wang, Y.Y.4
Diao, F.C.5
Wang, R.P.6
Zhang, M.7
Chen, D.Y.8
Zhai, Z.H.9
Shu, H.B.10
-
31
-
-
80052692078
-
LUBAC regulates NF-kappaB activation upon genotoxic stress by promoting linear ubiquitination of NEMO
-
Niu J, Shi Y, Iwai K, Wu ZH. 2011. LUBAC regulates NF-kappaB activation upon genotoxic stress by promoting linear ubiquitination of NEMO. EMBO J 30:3741-3753. https://doi.org/10.1038/emboj.2011.264.
-
(2011)
EMBO J
, vol.30
, pp. 3741-3753
-
-
Niu, J.1
Shi, Y.2
Iwai, K.3
Wu, Z.H.4
-
32
-
-
79960944389
-
HOIL-1L interacting protein (HOIP) is essential for CD40 signaling
-
Hostager BS, Kashiwada M, Colgan JD, Rothman PB. 2011. HOIL-1L interacting protein (HOIP) is essential for CD40 signaling. PLoS One 6:e23061. https://doi.org/10.1371/journal.pone.0023061.
-
(2011)
PLoS One
, vol.6
-
-
Hostager, B.S.1
Kashiwada, M.2
Colgan, J.D.3
Rothman, P.B.4
-
33
-
-
79960993122
-
Systems analysis identifies an essential role for SHANK-associated RH domain-interacting protein (SHARPIN) in macrophage Toll-like receptor 2 (TLR2) responses
-
Zak DE, Schmitz F, Gold ES, Diercks AH, Peschon JJ, Valvo JS, Niemista A, Podolsky I, Fallen SG, Suen R, Stolyar T, Johnson CD, Kennedy KA, Hamilton MK, Siggs OM, Beutler B, Aderem A. 2011. Systems analysis identifies an essential role for SHANK-associated RH domain-interacting protein (SHARPIN) in macrophage Toll-like receptor 2 (TLR2) responses. Proc Natl Acad Sci U S A 108:11536-11541. https://doi.org/10.1073/pnas.1107577108.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 11536-11541
-
-
Zak, D.E.1
Schmitz, F.2
Gold, E.S.3
Diercks, A.H.4
Peschon, J.J.5
Valvo, J.S.6
Niemista, A.7
Podolsky, I.8
Fallen, S.G.9
Suen, R.10
Stolyar, T.11
Johnson, C.D.12
Kennedy, K.A.13
Hamilton, M.K.14
Siggs, O.M.15
Beutler, B.16
Aderem, A.17
-
34
-
-
84863000898
-
The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity
-
Damgaard RB, Nachbur U, Yabal M, Wong WW, Fiil BK, Kastirr M, Rieser E, Rickard JA, Bankovacki A, Peschel C, Ruland J, Bekker-Jensen S, Mailand N, Kaufmann T, Strasser A, Walczak H, Silke J, Jost PJ, Gyrd-Hansen M. 2012. The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol Cell 46:746-758. https://doi.org/10.1016/j.molcel.2012.04.014.
-
(2012)
Mol Cell
, vol.46
, pp. 746-758
-
-
Damgaard, R.B.1
Nachbur, U.2
Yabal, M.3
Wong, W.W.4
Fiil, B.K.5
Kastirr, M.6
Rieser, E.7
Rickard, J.A.8
Bankovacki, A.9
Peschel, C.10
Ruland, J.11
Bekker-Jensen, S.12
Mailand, N.13
Kaufmann, T.14
Strasser, A.15
Walczak, H.16
Silke, J.17
Jost, P.J.18
Gyrd-Hansen, M.19
-
35
-
-
84903761551
-
The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation
-
Rodgers MA, Bowman JW, Fujita H, Orazio N, Shi M, Liang Q, Amatya R, Kelly TJ, Iwai K, Ting J, Jung JU. 2014. The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J Exp Med 211:1333-1347. https://doi.org/10.1084/jem.20132486.
-
(2014)
J Exp Med
, vol.211
, pp. 1333-1347
-
-
Rodgers, M.A.1
Bowman, J.W.2
Fujita, H.3
Orazio, N.4
Shi, M.5
Liang, Q.6
Amatya, R.7
Kelly, T.J.8
Iwai, K.9
Ting, J.10
Jung, J.U.11
-
36
-
-
33750219981
-
A ubiquitin ligase complex assembles linear polyubiquitin chains
-
Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, Kanie M, Sano S, Tokunaga F, Tanaka K, Iwai K. 2006. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 25:4877-4887. https://doi.org/10.1038/sj.emboj.7601360.
-
(2006)
EMBO J
, vol.25
, pp. 4877-4887
-
-
Kirisako, T.1
Kamei, K.2
Murata, S.3
Kato, M.4
Fukumoto, H.5
Kanie, M.6
Sano, S.7
Tokunaga, F.8
Tanaka, K.9
Iwai, K.10
-
37
-
-
84255168970
-
The emerging role of linear ubiquitination in cell signaling
-
Emmerich CH, Schmukle AC, Walczak H. 2011. The emerging role of linear ubiquitination in cell signaling. Sci Signal 4:re5. https://doi.org/10.1126/scisignal.2002187.
-
(2011)
Sci Signal
, vol.4
-
-
Emmerich, C.H.1
Schmukle, A.C.2
Walczak, H.3
-
38
-
-
59649103156
-
Involvement of linear polyubiquitylation of NEMO in NF-[kappa]B activation
-
Tokunaga F, Sakata Si Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K. 2009. Involvement of linear polyubiquitylation of NEMO in NF-[kappa]B activation. Nat Cell Biol 11:123-132. https://doi.org/10.1038/ncb1821.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 123-132
-
-
Tokunaga, F.1
Sakata Si Saeki, Y.2
Satomi, Y.3
Kirisako, T.4
Kamei, K.5
Nakagawa, T.6
Kato, M.7
Murata, S.8
Yamaoka, S.9
Yamamoto, M.10
Akira, S.11
Takao, T.12
Tanaka, K.13
Iwai, K.14
-
39
-
-
84878862687
-
OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin
-
Keusekotten K, Elliott PR, Glockner L, Fiil BK, Damgaard RB, Kulathu Y, Wauer T, Hospenthal MK, Gyrd-Hansen M, Krappmann D, Hofmann K, Komander D. 2013. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153:1312-1326. https://doi.org/10.1016/j.cell.2013.05.014.
-
(2013)
Cell
, vol.153
, pp. 1312-1326
-
-
Keusekotten, K.1
Elliott, P.R.2
Glockner, L.3
Fiil, B.K.4
Damgaard, R.B.5
Kulathu, Y.6
Wauer, T.7
Hospenthal, M.K.8
Gyrd-Hansen, M.9
Krappmann, D.10
Hofmann, K.11
Komander, D.12
-
40
-
-
84879390723
-
The linear ubiquitin-specific deubiquitinase Gumby regulates angiogenesis
-
Rivkin E, Almeida SM, Ceccarelli DF, Juang YC, MacLean TA, Srikumar T, Huang H, Dunham WH, Fukumura R, Xie G, Gondo Y, Raught B, Gingras AC, Sicheri F, Cordes SP. 2013. The linear ubiquitin-specific deubiquitinase Gumby regulates angiogenesis. Nature 498:318-324. https://doi.org/10.1038/nature12296.
-
(2013)
Nature
, vol.498
, pp. 318-324
-
-
Rivkin, E.1
Almeida, S.M.2
Ceccarelli, D.F.3
Juang, Y.C.4
MacLean, T.A.5
Srikumar, T.6
Huang, H.7
Dunham, W.H.8
Fukumura, R.9
Xie, G.10
Gondo, Y.11
Raught, B.12
Gingras, A.C.13
Sicheri, F.14
Cordes, S.P.15
-
41
-
-
84894496869
-
Suppression of LUBACmediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN
-
Takiuchi T, Nakagawa T, Tamiya H, Fujita H, Sasaki Y, Saeki Y, Takeda H, Sawasaki T, Buchberger A, Kimura T, Iwai K. 2014. Suppression of LUBACmediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN. Genes Cells 19:254-272. https://doi.org/10.1111/gtc.12128.
-
(2014)
Genes Cells
, vol.19
, pp. 254-272
-
-
Takiuchi, T.1
Nakagawa, T.2
Tamiya, H.3
Fujita, H.4
Sasaki, Y.5
Saeki, Y.6
Takeda, H.7
Sawasaki, T.8
Buchberger, A.9
Kimura, T.10
Iwai, K.11
-
42
-
-
84867043680
-
Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NFκB regulation
-
Tokunaga F, Nishimasu H, Ishitani R, Goto E, Noguchi T, Mio K, Kamei K, Ma A, Iwai K, Nureki O. 2012. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NFκB regulation. EMBO J 31: 3856-3870. https://doi.org/10.1038/emboj.2012.241.
-
(2012)
EMBO J
, vol.31
, pp. 3856-3870
-
-
Tokunaga, F.1
Nishimasu, H.2
Ishitani, R.3
Goto, E.4
Noguchi, T.5
Mio, K.6
Kamei, K.7
Ma, A.8
Iwai, K.9
Nureki, O.10
-
43
-
-
77955654403
-
Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development
-
Yang WL, Zhang X, Lin HK. 2010. Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene 29:4493-4503. https://doi.org/10.1038/onc.2010.190.
-
(2010)
Oncogene
, vol.29
, pp. 4493-4503
-
-
Yang, W.L.1
Zhang, X.2
Lin, H.K.3
-
44
-
-
84865709638
-
LUBAC synthesizes linear ubiquitin chains via a thioester intermediate
-
Stieglitz B, Morris-Davies AC, Koliopoulos MG, Christodoulou E, Rittinger K. 2012. LUBAC synthesizes linear ubiquitin chains via a thioester intermediate. EMBO Rep 13:840-846. https://doi.org/10.1038/embor.2012.105.
-
(2012)
EMBO Rep
, vol.13
, pp. 840-846
-
-
Stieglitz, B.1
Morris-Davies, A.C.2
Koliopoulos, M.G.3
Christodoulou, E.4
Rittinger, K.5
-
45
-
-
45749137626
-
Interferon regulatory factor 4 is involved in Epstein-Barr virus-mediated transformation of human B lymphocytes
-
Xu D, Zhao L, Del Valle L, Miklossy J, Zhang L. 2008. Interferon regulatory factor 4 is involved in Epstein-Barr virus-mediated transformation of human B lymphocytes. J Virol 82:6251-6258. https://doi.org/10.1128/JVI.00163-08.
-
(2008)
J Virol
, vol.82
, pp. 6251-6258
-
-
Xu, D.1
Zhao, L.2
Del Valle, L.3
Miklossy, J.4
Zhang, L.5
-
46
-
-
0029914174
-
Epstein-Barr virus latent membrane protein 1 blocks p53-mediated apoptosis through the induction of the A20 gene
-
Fries KL, Miller WE, Raab-Traub N. 1996. Epstein-Barr virus latent membrane protein 1 blocks p53-mediated apoptosis through the induction of the A20 gene. J Virol 70:8653-8659.
-
(1996)
J Virol
, vol.70
, pp. 8653-8659
-
-
Fries, K.L.1
Miller, W.E.2
Raab-Traub, N.3
-
47
-
-
33646942792
-
The latent membrane protein 1 of Epstein-Barr Virus (EBV) primes EBV latency cells for type I interferon production
-
Xu D, Brumm K, Zhang L. 2006. The latent membrane protein 1 of Epstein-Barr Virus (EBV) primes EBV latency cells for type I interferon production. J Biol Chem 281:9163-9169. https://doi.org/10.1074/jbc.M511884200.
-
(2006)
J Biol Chem
, vol.281
, pp. 9163-9169
-
-
Xu, D.1
Brumm, K.2
Zhang, L.3
-
48
-
-
84875236362
-
Regulation of NF-κB by ubiquitination
-
Chen J, Chen ZJ. 2013. Regulation of NF-κB by ubiquitination. Curr Opin Immunol 25:4-12. https://doi.org/10.1016/j.coi.2012.12.005.
-
(2013)
Curr Opin Immunol
, vol.25
, pp. 4-12
-
-
Chen, J.1
Chen, Z.J.2
-
49
-
-
84858725584
-
Regulation of NF-kappaB by deubiquitinases
-
Harhaj EW, Dixit VM. 2012. Regulation of NF-kappaB by deubiquitinases. Immunol Rev 246:107-124. https://doi.org/10.1111/j.1600-065X.2012.01100.x.
-
(2012)
Immunol Rev
, vol.246
, pp. 107-124
-
-
Harhaj, E.W.1
Dixit, V.M.2
-
50
-
-
1942501863
-
Epstein-Barr virus oncogenesis and the ubiquitinproteasome system
-
Masucci MG. 2004. Epstein-Barr virus oncogenesis and the ubiquitinproteasome system. Oncogene 23:2107-2115. https://doi.org/10.1038/sj.onc.1207372.
-
(2004)
Oncogene
, vol.23
, pp. 2107-2115
-
-
Masucci, M.G.1
-
51
-
-
0037331058
-
The ubiquitin/proteasome system in Epstein-Barr virus latency and associated malignancies
-
Dantuma NP, Masucci MG. 2003. The ubiquitin/proteasome system in Epstein-Barr virus latency and associated malignancies. Semin Cancer Biol 13:69-76. https://doi.org/10.1016/S1044-579X(02)00101-3.
-
(2003)
Semin Cancer Biol
, vol.13
, pp. 69-76
-
-
Dantuma, N.P.1
Masucci, M.G.2
-
52
-
-
27144443077
-
Targeting of host-cell ubiquitin pathways by viruses
-
Shackelford J, Pagano JS. 2005. Targeting of host-cell ubiquitin pathways by viruses. Essays Biochem 41:139-156.
-
(2005)
Essays Biochem
, vol.41
, pp. 139-156
-
-
Shackelford, J.1
Pagano, J.S.2
-
53
-
-
2942629346
-
Tumor viruses and cell signaling pathways: deubiquitination versus ubiquitination
-
Shackelford J, Pagano JS. 2004. Tumor viruses and cell signaling pathways: deubiquitination versus ubiquitination. Mol Cell Biol 24: 5089-5093. https://doi.org/10.1128/MCB.24.12.5089-5093.2004.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 5089-5093
-
-
Shackelford, J.1
Pagano, J.S.2
-
54
-
-
29444438631
-
Epstein-Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase
-
Knight JS, Sharma N, Robertson ES. 2005. Epstein-Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase. Proc Natl Acad Sci U S A 102:18562-18566. https://doi.org/10.1073/pnas.0503886102.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 18562-18566
-
-
Knight, J.S.1
Sharma, N.2
Robertson, E.S.3
-
55
-
-
84875514442
-
Epstein-Barr virus deubiquitinase down-regulates TRAF6-mediated NF-kappaB signaling during productive replication
-
Saito S, Murata T, Kanda T, Isomura H, Narita Y, Sugimoto A, Kawashima D, Tsurumi T. 2013. Epstein-Barr virus deubiquitinase down-regulates TRAF6-mediated NF-kappaB signaling during productive replication. J Virol 87:4060-4070. https://doi.org/10.1128/JVI.02020-12.
-
(2013)
J Virol
, vol.87
, pp. 4060-4070
-
-
Saito, S.1
Murata, T.2
Kanda, T.3
Isomura, H.4
Narita, Y.5
Sugimoto, A.6
Kawashima, D.7
Tsurumi, T.8
-
56
-
-
20144386721
-
Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1: IMplications for EBV-mediated immortalization
-
Saridakis V, Sheng Y, Sarkari F, Holowaty MN, Shire K, Nguyen T, Zhang RG, Liao J, Lee W, Edwards AM, Arrowsmith CH, Frappier L. 2005. Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1: IMplications for EBV-mediated immortalization. Mol Cell 18:25-36. https://doi.org/10.1016/j.molcel.2005.02.029.
-
(2005)
Mol Cell
, vol.18
, pp. 25-36
-
-
Saridakis, V.1
Sheng, Y.2
Sarkari, F.3
Holowaty, M.N.4
Shire, K.5
Nguyen, T.6
Zhang, R.G.7
Liao, J.8
Lee, W.9
Edwards, A.M.10
Arrowsmith, C.H.11
Frappier, L.12
-
57
-
-
84862891080
-
Viral oncoprotein LMP1 disrupts p53-induced cell cycle arrest and apoptosis through modulating K63-linked ubiquitination of p53
-
Li L, Li W, Xiao L, Xu J, Chen X, Tang M, Dong Z, Tao Q, Cao Y. 2012. Viral oncoprotein LMP1 disrupts p53-induced cell cycle arrest and apoptosis through modulating K63-linked ubiquitination of p53. Cell Cycle 11: 2327-2336. https://doi.org/10.4161/cc.20771.
-
(2012)
Cell Cycle
, vol.11
, pp. 2327-2336
-
-
Li, L.1
Li, W.2
Xiao, L.3
Xu, J.4
Chen, X.5
Tang, M.6
Dong, Z.7
Tao, Q.8
Cao, Y.9
-
58
-
-
83755196626
-
Epstein-Barr virus latent membrane protein LMP1 reduces p53 protein levels independent of the PI3K-Akt pathway
-
Husaini R, Ahmad M, Soo-Beng Khoo A. 2011. Epstein-Barr virus latent membrane protein LMP1 reduces p53 protein levels independent of the PI3K-Akt pathway. BMC Res Notes 4:551. https://doi.org/10.1186/1756-0500-4-551.
-
(2011)
BMC Res Notes
, vol.4
, pp. 551
-
-
Husaini, R.1
Ahmad, M.2
Soo-Beng Khoo, A.3
-
59
-
-
84930330653
-
TRAF1 coordinates polyubiquitin signaling to enhance Epstein-Barr virus LMP1-mediated growth and survival pathway activation
-
Greenfeld H, Takasaki K, Walsh MJ, Ersing I, Bernhardt K, Ma Y, Fu B, Ashbaugh CW, Cabo J, Mollo SB, Zhou H, Li S, Gewurz BE. 2015. TRAF1 coordinates polyubiquitin signaling to enhance Epstein-Barr virus LMP1-mediated growth and survival pathway activation. PLoS Pathog 11:e1004890. https://doi.org/10.1371/journal.ppat.1004890.
-
(2015)
PLoS Pathog
, vol.11
-
-
Greenfeld, H.1
Takasaki, K.2
Walsh, M.J.3
Ersing, I.4
Bernhardt, K.5
Ma, Y.6
Fu, B.7
Ashbaugh, C.W.8
Cabo, J.9
Mollo, S.B.10
Zhou, H.11
Li, S.12
Gewurz, B.E.13
-
60
-
-
79251550124
-
Linear ubiquitin assembly complex negatively regulates RIG-I-and TRIM25-mediated type I interferon induction
-
Inn KS, Gack MU, Tokunaga F, Shi M, Wong LY, Iwai K, Jung JU. 2011. Linear ubiquitin assembly complex negatively regulates RIG-I-and TRIM25-mediated type I interferon induction. Mol Cell 41:354-365. https://doi.org/10.1016/j.molcel.2010.12.029.
-
(2011)
Mol Cell
, vol.41
, pp. 354-365
-
-
Inn, K.S.1
Gack, M.U.2
Tokunaga, F.3
Shi, M.4
Wong, L.Y.5
Iwai, K.6
Jung, J.U.7
-
61
-
-
55549146091
-
Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3
-
Zhang M, Tian Y, Wang RP, Gao D, Zhang Y, Diao FC, Chen DY, Zhai ZH, Shu HB. 2008. Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res 18:1096-1104. https://doi.org/10.1038/cr.2008.277.
-
(2008)
Cell Res
, vol.18
, pp. 1096-1104
-
-
Zhang, M.1
Tian, Y.2
Wang, R.P.3
Gao, D.4
Zhang, Y.5
Diao, F.C.6
Chen, D.Y.7
Zhai, Z.H.8
Shu, H.B.9
-
62
-
-
84865119303
-
Linear ubiquitination of NEMO negatively regulates the interferon antiviral response through disruption of the MAVSTRAF3 complex
-
Belgnaoui SM, Paz S, Samuel S, Goulet ML, Sun Q, Kikkert M, Iwai K, Dikic I, Hiscott J, Lin R. 2012. Linear ubiquitination of NEMO negatively regulates the interferon antiviral response through disruption of the MAVSTRAF3 complex. Cell Host Microbe 12:211-222. https://doi.org/10.1016/j.chom.2012.06.009.
-
(2012)
Cell Host Microbe
, vol.12
, pp. 211-222
-
-
Belgnaoui, S.M.1
Paz, S.2
Samuel, S.3
Goulet, M.L.4
Sun, Q.5
Kikkert, M.6
Iwai, K.7
Dikic, I.8
Hiscott, J.9
Lin, R.10
-
63
-
-
84967106620
-
Ubiquitination of the transcription factor IRF-3 activates RIPA, the apoptotic pathway that protects mice from viral pathogenesis
-
Chattopadhyay S, Kuzmanovic T, Zhang Y, Wetzel Jaime L, Sen Ganes C. 2016. Ubiquitination of the transcription factor IRF-3 activates RIPA, the apoptotic pathway that protects mice from viral pathogenesis. Immunity 44:1151-1161. https://doi.org/10.1016/j.immuni.2016.04.009.
-
(2016)
Immunity
, vol.44
, pp. 1151-1161
-
-
Chattopadhyay, S.1
Kuzmanovic, T.2
Zhang, Y.3
Wetzel Jaime, L.4
Sen Ganes, C.5
-
64
-
-
16844377509
-
Regulation of the transcriptional activity of the IRF7 promoter by a pathway independent of interferon signaling
-
Ning S, Huye LE, Pagano JS. 2005. Regulation of the transcriptional activity of the IRF7 promoter by a pathway independent of interferon signaling. J Biol Chem 285:12262-12270.
-
(2005)
J Biol Chem
, vol.285
, pp. 12262-12270
-
-
Ning, S.1
Huye, L.E.2
Pagano, J.S.3
-
65
-
-
0041387416
-
Interferon regulatory factor 7 regulates expression of Epstein-Barr virus latent membrane protein 1: a regulatory circuit
-
Ning S, Hahn AM, Huye LE, Joseph PS. 2003. Interferon regulatory factor 7 regulates expression of Epstein-Barr virus latent membrane protein 1: a regulatory circuit. J Virol 77:9359-9368. https://doi.org/10.1128/JVI.77.17.9359-9368.2003.
-
(2003)
J Virol
, vol.77
, pp. 9359-9368
-
-
Ning, S.1
Hahn, A.M.2
Huye, L.E.3
Joseph, P.S.4
-
66
-
-
33644850482
-
Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20
-
Lin R, Yang L, Nakhaei P, Sun Q, Sharif-Askari E, Julkunen I, Hiscott J. 2006. Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J Biol Chem 281: 2095-2103. https://doi.org/10.1074/jbc.M510326200.
-
(2006)
J Biol Chem
, vol.281
, pp. 2095-2103
-
-
Lin, R.1
Yang, L.2
Nakhaei, P.3
Sun, Q.4
Sharif-Askari, E.5
Julkunen, I.6
Hiscott, J.7
-
67
-
-
84994474401
-
LMP1 signaling pathway activates IRF4 in EBV latency and a positive circuit between PI3K and Src is required
-
7 November
-
Wang L, Ren J, Li G, Moorman JP, Yao ZQ, Ning S. 7 November 2016. LMP1 signaling pathway activates IRF4 in EBV latency and a positive circuit between PI3K and Src is required. Oncogene. https://doi.org/10.1038/onc.2016.380.
-
(2016)
Oncogene
-
-
Wang, L.1
Ren, J.2
Li, G.3
Moorman, J.P.4
Yao, Z.Q.5
Ning, S.6
-
68
-
-
79961206325
-
Oncogenic IRFs provide a survival advantage for EBV-or HTLV1-transformed cells through induction of BIC expression
-
Wang L, Toomey NL, Diaz LA, Walker G, Ramos JC, Barber GN, Ning S. 2011. Oncogenic IRFs provide a survival advantage for EBV-or HTLV1-transformed cells through induction of BIC expression. J Virol 85: 8328-8337. https://doi.org/10.1128/JVI.00570-11.
-
(2011)
J Virol
, vol.85
, pp. 8328-8337
-
-
Wang, L.1
Toomey, N.L.2
Diaz, L.A.3
Walker, G.4
Ramos, J.C.5
Barber, G.N.6
Ning, S.7
|