메뉴 건너뛰기




Volumn 4, Issue 5, 2016, Pages

Monocyte, macrophage, and dendritic cell development: The human perspective

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL; ANIMAL MODEL; CYTOLOGY; DENDRITIC CELL; HUMAN; IMMUNOLOGY; MACROPHAGE; MONOCYTE;

EID: 85011665511     PISSN: None     EISSN: 21650497     Source Type: Journal    
DOI: 10.1128/microbiolspec.MCHD-0015-2015     Document Type: Article
Times cited : (29)

References (142)
  • 1
    • 0015276610 scopus 로고
    • The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells
    • van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL. 1972. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46:845-852.
    • (1972) Bull World Health Organ , vol.46 , pp. 845-852
    • van Furth, R.1    Hirsch, J.G.2    Humphrey, J.H.3    Spector, W.G.4    Langevoort, H.L.5
  • 2
    • 0028289244 scopus 로고
    • Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a
    • Sallusto F, Lanzavecchia A. 1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a. J Exp Med 179:1109-1118.
    • (1994) J Exp Med , vol.179 , pp. 1109-1118
    • Sallusto, F.1    Lanzavecchia, A.2
  • 4
    • 0016240723 scopus 로고
    • Identification of a novel cell type in peripheral lymphoid organs of mice 3 Functional properties in vivo
    • Steinman RM, Lustig DS, Cohn ZA. 1974. Identification of a novel cell type in peripheral lymphoid organs of mice. 3. Functional properties in vivo. J Exp Med 139:1431-1445.
    • (1974) J Exp Med , vol.139 , pp. 1431-1445
    • Steinman, R.M.1    Cohn, Z.A.2
  • 5
    • 58749083404 scopus 로고    scopus 로고
    • Macrophages as APC and the dendritic cell myth
    • Hume DA. 2008. Macrophages as APC and the dendritic cell myth. J Immunol 181:5829-5835.
    • (2008) J Immunol , vol.181 , pp. 5829-5835
    • Hume, D.A.1
  • 6
    • 84875528275 scopus 로고    scopus 로고
    • The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting
    • Merad M, Sathe P, Helft J, Miller J, Mortha A. 2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563-604.
    • (2013) Annu Rev Immunol , vol.31 , pp. 563-604
    • Merad, M.1    Helft, J.2    Miller, J.3    Mortha, A.4
  • 12
    • 84901358607 scopus 로고    scopus 로고
    • Monocytes and macrophages: developmental pathways and tissue homeostasis
    • Ginhoux F, Jung S. 2014. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392-404.
    • (2014) Nat Rev Immunol , vol.14 , pp. 392-404
    • Ginhoux, F.1    Jung, S.2
  • 13
    • 77349093593 scopus 로고    scopus 로고
    • Defining dendritic cells by conditional and constitutive cell ablation
    • Bar-On L, Jung S. 2010. Defining dendritic cells by conditional and constitutive cell ablation. Immunol Rev 234:76-89.
    • (2010) Immunol Rev , vol.234 , pp. 76-89
    • Bar-On, L.1    Jung, S.2
  • 14
    • 84861462335 scopus 로고    scopus 로고
    • Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells
    • Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS. 2012. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36:873-884.
    • (2012) Immunity , vol.36 , pp. 873-884
    • Seneschal, J.1    Gehad, A.2    Baecher-Allan, C.M.3    Kupper, T.S.4
  • 20
    • 84902590323 scopus 로고    scopus 로고
    • Macrophages in intestinal homeostasis and inflammation
    • Bain CC, Mowat AM. 2014. Macrophages in intestinal homeostasis and inflammation. Immunol Rev 260:102-117.
    • (2014) Immunol Rev , vol.260 , pp. 102-117
    • Bain, C.C.1    Mowat, A.M.2
  • 23
    • 0034547923 scopus 로고    scopus 로고
    • BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood
    • Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J. 2000. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 165:6037-6046.
    • (2000) J Immunol , vol.165 , pp. 6037-6046
    • Dzionek, A.1    Schmidt, P.2    Cremer, S.3    Zysk, M.4    Miltenyi, S.5    Buck, D.W.6    Schmitz, J.7
  • 24
    • 0037114743 scopus 로고    scopus 로고
    • Characterization of human blood dendritic cell subsets
    • MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN. 2002. Characterization of human blood dendritic cell subsets. Blood 100:4512-4520.
    • (2002) Blood , vol.100 , pp. 4512-4520
    • MacDonald, K.P.1    Clark, G.J.2    Dzionek, A.3    Schmitz, J.4    Hart, D.N.5
  • 27
    • 84920724791 scopus 로고    scopus 로고
    • Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
    • Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312-1326.
    • (2014) Cell , vol.159 , pp. 1312-1326
    • Lavin, Y.1    Blecher-Gonen, R.2    David, E.3    Keren-Shaul, H.4    Merad, M.5    Jung, S.6    Amit, I.7
  • 36
    • 80051959957 scopus 로고    scopus 로고
    • The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C-monocytes
    • Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM, Punt JA, Geissmann F, Hedrick CC. 2011. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C-monocytes. Nat Immunol 12:778-785.
    • (2011) Nat Immunol , vol.12 , pp. 778-785
    • Hanna, R.N.1    Hubbeling, H.G.2    Nackiewicz, D.3    Green, A.M.4    Punt, J.A.5    Geissmann, F.6    Hedrick, C.C.7
  • 41
    • 84866734182 scopus 로고    scopus 로고
    • The three human monocyte subsets: implications for health and disease
    • Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SC. 2012. The three human monocyte subsets: implications for health and disease. Immunol Res 53:41-57.
    • (2012) Immunol Res , vol.53 , pp. 41-57
    • Wong, K.L.1    Tai, J.J.2    Ong, S.M.3    Dang, T.M.4    Wong, S.C.5
  • 42
    • 2342524107 scopus 로고    scopus 로고
    • Bone marrow transdifferentiation in brain after transplantation: a retrospective study
    • Cogle CR, Yachnis AT, Laywell ED, Zander DS, Wingard JR, Steindler DA, Scott EW. 2004. Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet 363:1432-1437.
    • (2004) Lancet , vol.363 , pp. 1432-1437
    • Cogle, C.R.1    Laywell, E.D.2    Zander, D.S.3    Wingard, J.R.4    Steindler, D.A.5    Scott, E.W.6
  • 46
    • 0027137486 scopus 로고
    • Human and murine dermis contain dendritic cells Isolation by means of a novel method and phenotypical and functional characterization
    • Lenz A, Heine M, Schuler G, Romani N. 1993. Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. J Clin Invest 92:2587-2596.
    • (1993) J Clin Invest , vol.92 , pp. 2587-2596
    • Lenz, A.1    Schuler, G.2    Romani, N.3
  • 50
    • 34247104151 scopus 로고    scopus 로고
    • Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania
    • León B, López-Bravo M, Ardavín C. 2007. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26:519-531.
    • (2007) Immunity , vol.26 , pp. 519-531
    • León, B.1    Ardavín, C.2
  • 51
    • 84879996831 scopus 로고    scopus 로고
    • Plasmacytoid, conventional, and monocyte-derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation
    • Manh TP, Alexandre Y, Baranek T, Crozat K, Dalod M. 2013. Plasmacytoid, conventional, and monocyte-derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation. Eur J Immunol 43:1706-1715.
    • (2013) Eur J Immunol , vol.43 , pp. 1706-1715
    • Manh, T.P.1    Baranek, T.2    Crozat, K.3    Dalod, M.4
  • 52
    • 84911066600 scopus 로고    scopus 로고
    • Mononuclear phagocytes of the intestine, the skin, and the lung
    • Scott CL, Henri S, GuilliamsM. 2014. Mononuclear phagocytes of the intestine, the skin, and the lung. Immunol Rev 262:9-24.
    • (2014) Immunol Rev , vol.262 , pp. 9-24
    • Scott, C.L.1    Guilliams, M.2
  • 53
    • 79953059788 scopus 로고    scopus 로고
    • Plasmacytoid dendritic cells: recent progress and open questions
    • Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V. 2011. Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 29:163-183.
    • (2011) Annu Rev Immunol , vol.29 , pp. 163-183
    • Reizis, B.1    Ghosh, H.S.2    Lewis, K.L.3    Sisirak, V.4
  • 54
    • 84892177710 scopus 로고    scopus 로고
    • Rapid detection of dendritic cell and monocyte disorders using CD4 as a lineage marker of the human peripheral blood antigen-presenting cell compartment
    • Jardine L, Barge D, Ames-Draycott A, Pagan S, Cookson S, Spickett G, Haniffa M, Collin M, Bigley V. 2013. Rapid detection of dendritic cell and monocyte disorders using CD4 as a lineage marker of the human peripheral blood antigen-presenting cell compartment. Front Immunol 4:495. doi:10.3389/fimmu.2013.00495.
    • (2013) Front Immunol , vol.4 , pp. 495
    • Jardine, L.1    Ames-Draycott, A.2    Pagan, S.3    Cookson, S.4    Spickett, G.5    Haniffa, M.6    Collin, M.7    Bigley, V.8
  • 57
    • 84926631436 scopus 로고    scopus 로고
    • Mouse conventional dendritic cells can be universally classified based on the mutually exclusive expression of XCR1 and SIRPa
    • Gurka S, Hartung E, BeckerM, Kroczek RA. 2015.Mouse conventional dendritic cells can be universally classified based on the mutually exclusive expression of XCR1 and SIRPa. Front Immunol 6:35. doi:10.3389/fimmu.2015.00035.
    • (2015) Front Immunol , vol.6 , pp. 35
    • Gurka, S.1    Hartung, E.2    Kroczek, R.A.3
  • 59
    • 79958053079 scopus 로고    scopus 로고
    • Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status
    • Mittag D, Proietto AI, Loudovaris T, Mannering SI, Vremec D, Shortman K, Wu L, Harrison LC. 2011. Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status. J Immunol 186:6207-6217.
    • (2011) J Immunol , vol.186 , pp. 6207-6217
    • Mittag, D.1    Loudovaris, T.2    Mannering, S.I.3    Vremec, D.4    Shortman, K.5    Wu, L.6    Harrison, L.C.7
  • 61
    • 84879591892 scopus 로고    scopus 로고
    • Similar antigen crosspresentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells
    • Segura E, Durand M, Amigorena S. 2013. Similar antigen crosspresentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J Exp Med 210:1035-1047.
    • (2013) J Exp Med , vol.210 , pp. 1035-1047
    • Segura, E.1    Amigorena, S.2
  • 62
    • 56749152272 scopus 로고    scopus 로고
    • Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells
    • Merad M, Ginhoux F, Collin M. 2008. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 8:935-947.
    • (2008) Nat Rev Immunol , vol.8 , pp. 935-947
    • Merad, M.1    Collin, M.2
  • 65
    • 84922179711 scopus 로고    scopus 로고
    • CD1c+ blood dendritic cells have Langerhans cell potential
    • Milne P, Bigley V, Gunawan M, Haniffa M, Collin M. 2015. CD1c+ blood dendritic cells have Langerhans cell potential. Blood 125:470-473.
    • (2015) Blood , vol.125 , pp. 470-473
    • Milne, P.1    Gunawan, M.2    Haniffa, M.3    Collin, M.4
  • 66
    • 77349112874 scopus 로고    scopus 로고
    • Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin
    • Romani N, Clausen BE, Stoitzner P. 2010. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev 234: 120-141.
    • (2010) Immunol Rev , vol.234 , pp. 120-141
    • Romani, N.1    Stoitzner, P.2
  • 73
    • 84864152036 scopus 로고    scopus 로고
    • IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia
    • Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, Barrow AD, Diamond MS, Colonna M. 2012. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 13:753-760.
    • (2012) Nat Immunol , vol.13 , pp. 753-760
    • Wang, Y.1    Vermi, W.2    Gilfillan, S.3    Rossini, C.4    Cella, M.5    Barrow, A.D.6    Diamond, M.S.7    Colonna, M.8
  • 74
  • 75
    • 0030456368 scopus 로고    scopus 로고
    • A role for endogenous transforming growth factor β1 in Langerhans cell biology: the skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells
    • Borkowski TA, Letterio JJ, Farr AG, Udey MC. 1996. A role for endogenous transforming growth factor β1 in Langerhans cell biology: the skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells. J Exp Med 184:2417-2422.
    • (1996) J Exp Med , vol.184 , pp. 2417-2422
    • Borkowski, T.A.1    Farr, A.G.2    Udey, M.C.3
  • 76
    • 0023266724 scopus 로고
    • Further evidence for the self-reproducing capacity of Langerhans cells in human skin
    • Czernielewski JM, Demarchez M. 1987. Further evidence for the self-reproducing capacity of Langerhans cells in human skin. J Invest Dermatol 88:17-20.
    • (1987) J Invest Dermatol , vol.88 , pp. 17-20
    • Czernielewski, J.M.1    Demarchez, M.2
  • 78
    • 78751680917 scopus 로고    scopus 로고
    • Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft
    • Kanitakis J, Morelon E, Petruzzo P, Badet L, Dubernard JM. 2011. Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft. Exp Dermatol 20:145-146.
    • (2011) Exp Dermatol , vol.20 , pp. 145-146
    • Kanitakis, J.1    Petruzzo, P.2    Badet, L.3    Dubernard, J.M.4
  • 85
    • 77953754015 scopus 로고    scopus 로고
    • Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development
    • Doulatov S, Notta F, Eppert K, Nguyen LT, Ohashi PS, Dick JE. 2010. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol 11:585-593.
    • (2010) Nat Immunol , vol.11 , pp. 585-593
    • Doulatov, S.1    Eppert, K.2    Nguyen, L.T.3    Ohashi, P.S.4    Dick, J.E.5
  • 86
    • 84907611125 scopus 로고    scopus 로고
    • Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-β
    • Martínez-Cingolani C, Grandclaudon M, Jeanmougin M, Jouve M, Zollinger R, Soumelis V. 2014. Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-β. Blood 124:2411-2420.
    • (2014) Blood , vol.124 , pp. 2411-2420
    • Martínez-Cingolani, C.1    Jeanmougin, M.2    Jouve, M.3    Zollinger, R.4    Soumelis, V.5
  • 91
    • 33744473294 scopus 로고    scopus 로고
    • Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes
    • Naik SH, Metcalf D, van Nieuwenhuijze A, Wicks I, Wu L, O'Keeffe M, Shortman K. 2006. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat Immunol 7:663-671.
    • (2006) Nat Immunol , vol.7 , pp. 663-671
    • Naik, S.H.1    van Nieuwenhuijze, A.2    Wicks, I.3    Wu, L.4    O'Keeffe, M.5    Shortman, K.6
  • 93
    • 84904394558 scopus 로고    scopus 로고
    • Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophagedendritic cell-restricted progenitor
    • Sathe P, Metcalf D, Vremec D, Naik SH, Langdon WY, Huntington ND, Wu L, Shortman K. 2014. Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophagedendritic cell-restricted progenitor. Immunity 41:104-115.
    • (2014) Immunity , vol.41 , pp. 104-115
    • Sathe, P.1    Vremec, D.2    Naik, S.H.3    Langdon, W.Y.4    Huntington, N.D.5    Wu, L.6    Shortman, K.7
  • 95
    • 84878177936 scopus 로고    scopus 로고
    • A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential
    • Onai N, Kurabayashi K, Hosoi-Amaike M, Toyama-Sorimachi N, Matsushima K, Inaba K, Ohteki T. 2013. A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential. Immunity 38:943-957.
    • (2013) Immunity , vol.38 , pp. 943-957
    • Onai, N.1    Hosoi-Amaike, M.2    Toyama-Sorimachi, N.3    Matsushima, K.4    Inaba, K.5    Ohteki, T.6
  • 97
    • 84864297838 scopus 로고    scopus 로고
    • Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages
    • Satpathy AT, Kc W, Albring JC, Edelson BT, Kretzer NM, Bhattacharya D, Murphy TL, Murphy KM. 2012. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J Exp Med 209:1135-1152.
    • (2012) J Exp Med , vol.209 , pp. 1135-1152
    • Satpathy, A.T.1    Albring, J.C.2    Edelson, B.T.3    Kretzer, N.M.4    Bhattacharya, D.5    Murphy, T.L.6    Murphy, K.M.7
  • 100
    • 0028784287 scopus 로고
    • Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset
    • Galy A, Travis M, Cen D, Chen B, Human T. 1995. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3:459-473.
    • (1995) Immunity , vol.3 , pp. 459-473
    • Galy, A.1    Cen, D.2    Chen, B.3    Human, T.4
  • 101
    • 10644270729 scopus 로고    scopus 로고
    • Clonal type I interferonproducing and dendritic cell precursors are contained in both human lymphoid and myeloid progenitor populations
    • Chicha L, Jarrossay D, Manz MG. 2004. Clonal type I interferonproducing and dendritic cell precursors are contained in both human lymphoid and myeloid progenitor populations. J Exp Med 200:1519-1524.
    • (2004) J Exp Med , vol.200 , pp. 1519-1524
    • Chicha, L.1    Manz, M.G.2
  • 102
    • 0034684654 scopus 로고    scopus 로고
    • Id2 and Id3 inhibit development of CD34+ stem cells into predendritic cell (pre-DC)2 but not into pre-DC1: evidence for a lymphoid origin of pre-DC2
    • Spits H, Couwenberg F, Bakker AQ, Weijer K, Uittenbogaart CH. 2000. Id2 and Id3 inhibit development of CD34+ stem cells into predendritic cell (pre-DC)2 but not into pre-DC1: evidence for a lymphoid origin of pre-DC2. J Exp Med 192:1775-1784.
    • (2000) J Exp Med , vol.192 , pp. 1775-1784
    • Spits, H.1    Bakker, A.Q.2    Weijer, K.3    Uittenbogaart, C.H.4
  • 103
    • 84872093721 scopus 로고    scopus 로고
    • Convergent differentiation: myeloid and lymphoid pathways to murine plasmacytoid dendritic cells
    • Sathe P, Vremec D, Wu L, Corcoran L, Shortman K. 2013. Convergent differentiation: myeloid and lymphoid pathways to murine plasmacytoid dendritic cells. Blood 121:11-19.
    • (2013) Blood , vol.121 , pp. 11-19
    • Sathe, P.1    Wu, L.2    Corcoran, L.3    Shortman, K.4
  • 104
    • 0030831130 scopus 로고    scopus 로고
    • Identification of clonogenic common lymphoid progenitors in mouse bone marrow
    • Kondo M, Weissman IL, Akashi K. 1997. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661-672.
    • (1997) Cell , vol.91 , pp. 661-672
    • Kondo, M.1    Akashi, K.2
  • 105
    • 0034624828 scopus 로고    scopus 로고
    • A clonogenic common myeloid progenitor that gives rise to all myeloid lineages
    • Akashi K, Traver D, Miyamoto T, Weissman IL. 2000. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193-197.
    • (2000) Nature , vol.404 , pp. 193-197
    • Akashi, K.1    Miyamoto, T.2    Weissman, I.L.3
  • 106
    • 77958532465 scopus 로고    scopus 로고
    • A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model
    • Kawamoto H, Ikawa T, Masuda K, Wada H, Katsura Y. 2010. A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model. Immunol Rev 238:23-36.
    • (2010) Immunol Rev , vol.238 , pp. 23-36
    • Kawamoto, H.1    Masuda, K.2    Wada, H.3    Katsura, Y.4
  • 110
    • 0030637828 scopus 로고    scopus 로고
    • The molecular control of granulocytes and macrophages
    • discussion 50-56
    • Metcalf D. 1997. The molecular control of granulocytes and macrophages. Ciba Found Symp 204:40-50, discussion 50-56.
    • (1997) Ciba Found Symp , vol.204 , pp. 40-50
    • Metcalf, D.1
  • 111
    • 0029850347 scopus 로고    scopus 로고
    • Granulocytic and monocytic differentiation of CD34hi cells is associated with distinct changes in the expression of the PU.1-regulated molecules, CD64 and macrophage colony-stimulating factor receptor
    • Olweus J, Thompson PA, Lund-Johansen F. 1996. Granulocytic and monocytic differentiation of CD34hi cells is associated with distinct changes in the expression of the PU.1-regulated molecules, CD64 and macrophage colony-stimulating factor receptor. Blood 88:3741-3754.
    • (1996) Blood , vol.88 , pp. 3741-3754
    • Olweus, J.1    Lund-Johansen, F.2
  • 113
    • 0037015069 scopus 로고    scopus 로고
    • Prospective isolation of human clonogenic common myeloid progenitors
    • Manz MG, Miyamoto T, Akashi K, Weissman IL. 2002. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A 99:11872-11877.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 11872-11877
    • Manz, M.G.1    Akashi, K.2    Weissman, I.L.3
  • 114
    • 84880913767 scopus 로고    scopus 로고
    • Human dendritic cell subsets
    • Collin M, McGovern N, Haniffa M. 2013. Human dendritic cell subsets. Immunology 140:22-30.
    • (2013) Immunology , vol.140 , pp. 22-30
    • Collin, M.1    Haniffa, M.2
  • 117
    • 0036177227 scopus 로고    scopus 로고
    • Expression and function of the mannose receptor CD206 on epidermal dendritic cells in inflammatory skin diseases
    • Wollenberg A, Mommaas M, Oppel T, Schottdorf EM, Günther S, Moderer M. 2002. Expression and function of the mannose receptor CD206 on epidermal dendritic cells in inflammatory skin diseases. J Invest Dermatol 118:327-334.
    • (2002) J Invest Dermatol , vol.118 , pp. 327-334
    • Wollenberg, A.1    Oppel, T.2    Schottdorf, E.M.3    Günther, S.4    Moderer, M.5
  • 120
    • 0023177425 scopus 로고
    • Distribution and turnover of Langerhans cells during delayed immune responses in human skin
    • Kaplan G, Nusrat A, Witmer MD, Nath I, Cohn ZA. 1987. Distribution and turnover of Langerhans cells during delayed immune responses in human skin. J Exp Med 165:763-776.
    • (1987) J Exp Med , vol.165 , pp. 763-776
    • Kaplan, G.1    Witmer, M.D.2    Nath, I.3    Cohn, Z.A.4
  • 124
    • 0032536795 scopus 로고    scopus 로고
    • Transforming growth factor β1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells
    • Geissmann F, Prost C, Monnet JP, Dy M, Brousse N, Hermine O. 1998. Transforming growth factor β1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J Exp Med 187:961-966.
    • (1998) J Exp Med , vol.187 , pp. 961-966
    • Geissmann, F.1    Monnet, J.P.2    Dy, M.3    Brousse, N.4    Hermine, O.5
  • 127
    • 80052083555 scopus 로고    scopus 로고
    • Human dendritic cell deficiency: the missing ID?
    • Collin M, Bigley V, Haniffa M, Hambleton S. 2011. Human dendritic cell deficiency: the missing ID? Nat Rev Immunol 11:575-583.
    • (2011) Nat Rev Immunol , vol.11 , pp. 575-583
    • Collin, M.1    Haniffa, M.2    Hambleton, S.3
  • 129
    • 84926408535 scopus 로고    scopus 로고
    • Haematopoietic and immune defects associated with GATA2 mutation
    • Collin M, Dickinson R, Bigley V. 2015. Haematopoietic and immune defects associated with GATA2 mutation. Br J Haematol 169:173-187.
    • (2015) Br J Haematol , vol.169 , pp. 173-187
    • Collin, M.1    Bigley, V.2
  • 132
    • 84856909174 scopus 로고    scopus 로고
    • Congenital pancytopenia and absence of B lymphocytes in a neonate with a mutation in the Ikaros gene
    • Goldman FD, Gurel Z, Al-Zubeidi D, Fried AJ, Icardi M, Song C, Dovat S. 2012. Congenital pancytopenia and absence of B lymphocytes in a neonate with a mutation in the Ikaros gene. Pediatr Blood Cancer 58:591-597.
    • (2012) Pediatr Blood Cancer , vol.58 , pp. 591-597
    • Goldman, F.D.1    Al-Zubeidi, D.2    Fried, A.J.3    Icardi, M.4    Song, C.5    Dovat, S.6
  • 133
    • 78751624551 scopus 로고    scopus 로고
    • Genetic etiologies of severe congenital neutropenia
    • Boztug K, Klein C. 2011. Genetic etiologies of severe congenital neutropenia. Curr Opin Pediatr 23:21-26.
    • (2011) Curr Opin Pediatr , vol.23 , pp. 21-26
    • Boztug, K.1    Klein, C.2
  • 134
    • 0037656291 scopus 로고    scopus 로고
    • Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease
    • Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F, Klotman ME, Diaz GA. 2003. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34:70-74.
    • (2003) Nat Genet , vol.34 , pp. 70-74
    • Hernandez, P.A.1    Lukens, J.N.2    Taniuchi, S.3    Bohinjec, J.4    Francois, F.5    Klotman, M.E.6    Diaz, G.A.7
  • 141
    • 84928705633 scopus 로고    scopus 로고
    • Each cell counts: hematopoiesis and immunity research in the era of single cell genomics
    • Jaitin DA, Keren-Shaul H, Elefant N, Amit I. 2015. Each cell counts: hematopoiesis and immunity research in the era of single cell genomics. Semin Immunol 27:67-71.
    • (2015) Semin Immunol , vol.27 , pp. 67-71
    • Jaitin, D.A.1    Elefant, N.2    Amit, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.