-
1
-
-
84892142922
-
Computer science: The learning machines
-
N. Jones, "Computer science: The learning machines, " Nature 505(7482), pp. 146-8, 2014.
-
(2014)
Nature
, vol.505
, Issue.7482
, pp. 146-148
-
-
Jones, N.1
-
2
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks, " in Advances in neural information processing systems, pp. 1097-1105, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
4
-
-
84885933775
-
Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network
-
Springer
-
A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam, and M. Nielsen, "Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network, " in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2013, pp. 246-253, Springer, 2013.
-
(2013)
Medical Image Computing and Computer-Assisted Intervention-MICCAI
, vol.2013
, pp. 246-253
-
-
Prasoon, A.1
Petersen, K.2
Igel, C.3
Lauze, F.4
Dam, E.5
Nielsen, M.6
-
5
-
-
84909644435
-
A new 2.5 d representation for lymph node detection using random sets of deep convolutional neural network observations
-
Springer
-
H. R. Roth, L. Lu, A. Seff, K. M. Cherry, J. Hoffman, S. Wang, J. Liu, E. Turkbey, and R. M. Summers, "A new 2.5 d representation for lymph node detection using random sets of deep convolutional neural network observations, " in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014, pp. 520-527, Springer, 2014.
-
(2014)
Medical Image Computing and Computer-Assisted Intervention-MICCAI
, vol.2014
, pp. 520-527
-
-
Roth, H.R.1
Lu, L.2
Seff, A.3
Cherry, K.M.4
Hoffman, J.5
Wang, S.6
Liu, J.7
Turkbey, E.8
Summers, R.M.9
-
6
-
-
84996520113
-
-
arXiv preprint arXiv: 1407.5976
-
H. R. Roth, J. Yao, L. Lu, J. Stieger, J. E. Burns, and R. M. Summers, "Detection of sclerotic spine metastases via random aggregation of deep convolutional neural network classifications, " arXiv preprint arXiv:1407.5976, 2014.
-
(2014)
Detection of Sclerotic Spine Metastases Via Random Aggregation of Deep Convolutional Neural Network Classifications
-
-
Roth, H.R.1
Yao, J.2
Lu, L.3
Stieger, J.4
Burns, J.E.5
Summers, R.M.6
-
7
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neural networks
-
D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, "Mitosis detection in breast cancer histology images with deep neural networks, " MICCAI, 2013.
-
(2013)
MICCAI
-
-
Cireşan, D.C.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
8
-
-
84906343066
-
-
arXiv preprint arXiv: 1311.2524
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation, " arXiv preprint arXiv:1311.2524, 2013.
-
(2013)
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
9
-
-
84866657764
-
Slic superpixels compared to state-of-the-art superpixel methods
-
R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, "Slic superpixels compared to state-of-the-art superpixel methods, " Pattern Analysis and Machine Intelligence, IEEE Transactions on 34(11), pp. 2274-2282, 2012.
-
(2012)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.34
, Issue.11
, pp. 2274-2282
-
-
Achanta, R.1
Shaji, A.2
Smith, K.3
Lucchi, A.4
Fua, P.5
Susstrunk, S.6
-
10
-
-
84943371567
-
A bottom-up approach for automatic pancreas segmentation in abdominal ct scans
-
arXiv preprint arXiv: 1407.8497
-
A. Farag, L. Lu, E. Turkbey, J. Liu, and R. M. Summers, "A bottom-up approach for automatic pancreas segmentation in abdominal ct scans, " MICCAI Abdominal Imaging Workshop, arXiv preprint arXiv:1407.8497, 2014.
-
(2014)
MICCAI Abdominal Imaging Workshop
-
-
Farag, A.1
Lu, L.2
Turkbey, E.3
Liu, J.4
Summers, R.M.5
-
11
-
-
84867720412
-
-
arXiv preprint arXiv: 1207.0580
-
G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors, " arXiv preprint arXiv:1207.0580, 2012.
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
12
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting, " The Journal of Machine Learning Research 15(1), pp. 1929-1958, 2014.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
14
-
-
84863349927
-
Abdominal multi-organ segmentation of ct images based on hierarchical spatial modeling of organ interrelations
-
Springer
-
T. Okada, M. G. Linguraru, Y. Yoshida, M. Hori, R. M. Summers, Y.-W. Chen, N. Tomiyama, and Y. Sato, "Abdominal multi-organ segmentation of ct images based on hierarchical spatial modeling of organ interrelations, " in Abdominal Imaging. Computational and Clinical Applications, pp. 173-180, Springer, 2012.
-
(2012)
Abdominal Imaging. Computational and Clinical Applications
, pp. 173-180
-
-
Okada, T.1
Linguraru, M.G.2
Yoshida, Y.3
Hori, M.4
Summers, R.M.5
Chen, Y.-W.6
Tomiyama, N.7
Sato, Y.8
-
15
-
-
84883368454
-
Automated abdominal multi-organ segmentation with subject-specific atlas generation
-
R. Wolz, C. Chengwen, K. Misawa, M. Fujiwara, K. Mori, and D. Rueckert, "Automated abdominal multi-organ segmentation with subject-specific atlas generation, " IEEE, 2013.
-
(2013)
IEEE
-
-
Wolz, R.1
Chengwen, C.2
Misawa, K.3
Fujiwara, M.4
Mori, K.5
Rueckert, D.6
|