-
1
-
-
84948446391
-
Acute loss of TET function results in aggressive myeloid cancer in mice
-
An, J., González-Avalos, E., Chawla, A., Jeong, M., López-Moyado, I.F., Li, W., Goodell, M.A., Chavez, L., Ko, M., Rao, A., Acute loss of TET function results in aggressive myeloid cancer in mice. Nat. Commun., 6, 2015, 10071.
-
(2015)
Nat. Commun.
, vol.6
, pp. 10071
-
-
An, J.1
González-Avalos, E.2
Chawla, A.3
Jeong, M.4
López-Moyado, I.F.5
Li, W.6
Goodell, M.A.7
Chavez, L.8
Ko, M.9
Rao, A.10
-
2
-
-
84928231344
-
Phosphorylation of TET proteins is regulated via O-GlcNAcylation by the O-linked N-acetylglucosamine transferase (OGT)
-
Bauer, C., Göbel, K., Nagaraj, N., Colantuoni, C., Wang, M., Müller, U., Kremmer, E., Rottach, A., Leonhardt, H., Phosphorylation of TET proteins is regulated via O-GlcNAcylation by the O-linked N-acetylglucosamine transferase (OGT). J. Biol. Chem. 290 (2015), 4801–4812.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 4801-4812
-
-
Bauer, C.1
Göbel, K.2
Nagaraj, N.3
Colantuoni, C.4
Wang, M.5
Müller, U.6
Kremmer, E.7
Rottach, A.8
Leonhardt, H.9
-
3
-
-
80053144962
-
A decade of exploring the cancer epigenome - biological and translational implications
-
Baylin, S.B., Jones, P.A., A decade of exploring the cancer epigenome - biological and translational implications. Nat. Rev. Cancer 11 (2011), 726–734.
-
(2011)
Nat. Rev. Cancer
, vol.11
, pp. 726-734
-
-
Baylin, S.B.1
Jones, P.A.2
-
4
-
-
0037180757
-
Inflammation and cancer
-
Coussens, L.M., Werb, Z., Inflammation and cancer. Nature 420 (2002), 860–867.
-
(2002)
Nature
, vol.420
, pp. 860-867
-
-
Coussens, L.M.1
Werb, Z.2
-
5
-
-
78650758676
-
Histone H3K27ac separates active from poised enhancers and predicts developmental state
-
Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W., Steine, E.J., Hanna, J., Lodato, M.A., Frampton, G.M., Sharp, P.A., et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. USA 107 (2010), 21931–21936.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 21931-21936
-
-
Creyghton, M.P.1
Cheng, A.W.2
Welstead, G.G.3
Kooistra, T.4
Carey, B.W.5
Steine, E.J.6
Hanna, J.7
Lodato, M.A.8
Frampton, G.M.9
Sharp, P.A.10
-
6
-
-
72049125350
-
Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
-
Dang, L., White, D.W., Gross, S., Bennett, B.D., Bittinger, M.A., Driggers, E.M., Fantin, V.R., Jang, H.G., Jin, S., Keenan, M.C., et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462 (2009), 739–744.
-
(2009)
Nature
, vol.462
, pp. 739-744
-
-
Dang, L.1
White, D.W.2
Gross, S.3
Bennett, B.D.4
Bittinger, M.A.5
Driggers, E.M.6
Fantin, V.R.7
Jang, H.G.8
Jin, S.9
Keenan, M.C.10
-
7
-
-
66249137734
-
Mutation in TET2 in myeloid cancers
-
Delhommeau, F., Dupont, S., Della Valle, V., James, C., Trannoy, S., Massé, A., Kosmider, O., Le Couedic, J.P., Robert, F., Alberdi, A., et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360 (2009), 2289–2301.
-
(2009)
N. Engl. J. Med.
, vol.360
, pp. 2289-2301
-
-
Delhommeau, F.1
Dupont, S.2
Della Valle, V.3
James, C.4
Trannoy, S.5
Massé, A.6
Kosmider, O.7
Le Couedic, J.P.8
Robert, F.9
Alberdi, A.10
-
8
-
-
84978871086
-
Mismatch repair proteins recruit DNA methyltransferase 1 to sites of oxidative DNA damage
-
Ding, N., Bonham, E.M., Hannon, B.E., Amick, T.R., Baylin, S.B., O'Hagan, H.M., Mismatch repair proteins recruit DNA methyltransferase 1 to sites of oxidative DNA damage. J. Mol. Cell Biol 8 (2016), 244–254.
-
(2016)
J. Mol. Cell Biol
, vol.8
, pp. 244-254
-
-
Ding, N.1
Bonham, E.M.2
Hannon, B.E.3
Amick, T.R.4
Baylin, S.B.5
O'Hagan, H.M.6
-
9
-
-
84860577189
-
A DNA hypermethylation module for the stem/progenitor cell signature of cancer
-
Easwaran, H., Johnstone, S.E., Van Neste, L., Ohm, J., Mosbruger, T., Wang, Q., Aryee, M.J., Joyce, P., Ahuja, N., Weisenberger, D., et al. A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res. 22 (2012), 837–849.
-
(2012)
Genome Res.
, vol.22
, pp. 837-849
-
-
Easwaran, H.1
Johnstone, S.E.2
Van Neste, L.3
Ohm, J.4
Mosbruger, T.5
Wang, Q.6
Aryee, M.J.7
Joyce, P.8
Ahuja, N.9
Weisenberger, D.10
-
10
-
-
35648946229
-
Chronic inflammation and oxidative stress in human carcinogenesis
-
Federico, A., Morgillo, F., Tuccillo, C., Ciardiello, F., Loguercio, C., Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer 121 (2007), 2381–2386.
-
(2007)
Int. J. Cancer
, vol.121
, pp. 2381-2386
-
-
Federico, A.1
Morgillo, F.2
Tuccillo, C.3
Ciardiello, F.4
Loguercio, C.5
-
11
-
-
78650019179
-
Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
-
Figueroa, M.E., Abdel-Wahab, O., Lu, C., Ward, P.S., Patel, J., Shih, A., Li, Y., Bhagwat, N., Vasanthakumar, A., Fernandez, H.F., et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18 (2010), 553–567.
-
(2010)
Cancer Cell
, vol.18
, pp. 553-567
-
-
Figueroa, M.E.1
Abdel-Wahab, O.2
Lu, C.3
Ward, P.S.4
Patel, J.5
Shih, A.6
Li, Y.7
Bhagwat, N.8
Vasanthakumar, A.9
Fernandez, H.F.10
-
12
-
-
44449148691
-
Oxidative stress, DNA methylation and carcinogenesis
-
Franco, R., Schoneveld, O., Georgakilas, A.G., Panayiotidis, M.I., Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett. 266 (2008), 6–11.
-
(2008)
Cancer Lett.
, vol.266
, pp. 6-11
-
-
Franco, R.1
Schoneveld, O.2
Georgakilas, A.G.3
Panayiotidis, M.I.4
-
13
-
-
34547897023
-
Histone deacetylases and cancer
-
Glozak, M.A., Seto, E., Histone deacetylases and cancer. Oncogene 26 (2007), 5420–5432.
-
(2007)
Oncogene
, vol.26
, pp. 5420-5432
-
-
Glozak, M.A.1
Seto, E.2
-
14
-
-
84856058152
-
Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers
-
Haffner, M.C., Chaux, A., Meeker, A.K., Esopi, D.M., Gerber, J., Pellakuru, L.G., Toubaji, A., Argani, P., Iacobuzio-Donahue, C., Nelson, W.G., et al. Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget 2 (2011), 627–637.
-
(2011)
Oncotarget
, vol.2
, pp. 627-637
-
-
Haffner, M.C.1
Chaux, A.2
Meeker, A.K.3
Esopi, D.M.4
Gerber, J.5
Pellakuru, L.G.6
Toubaji, A.7
Argani, P.8
Iacobuzio-Donahue, C.9
Nelson, W.G.10
-
15
-
-
84860221291
-
Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation
-
Hashimoto, H., Liu, Y., Upadhyay, A.K., Chang, Y., Howerton, S.B., Vertino, P.M., Zhang, X., Cheng, X., Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 40 (2012), 4841–4849.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 4841-4849
-
-
Hashimoto, H.1
Liu, Y.2
Upadhyay, A.K.3
Chang, Y.4
Howerton, S.B.5
Vertino, P.M.6
Zhang, X.7
Cheng, X.8
-
16
-
-
84894257068
-
Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA
-
Hashimoto, H., Pais, J.E., Zhang, X., Saleh, L., Fu, Z.Q., Dai, N., Corrêa, I.R. Jr., Zheng, Y., Cheng, X., Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA. Nature 506 (2014), 391–395.
-
(2014)
Nature
, vol.506
, pp. 391-395
-
-
Hashimoto, H.1
Pais, J.E.2
Zhang, X.3
Saleh, L.4
Fu, Z.Q.5
Dai, N.6
Corrêa, I.R.7
Zheng, Y.8
Cheng, X.9
-
17
-
-
80052495940
-
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
-
He, Y.F., Li, B.Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333 (2011), 1303–1307.
-
(2011)
Science
, vol.333
, pp. 1303-1307
-
-
He, Y.F.1
Li, B.Z.2
Li, Z.3
Liu, P.4
Wang, Y.5
Tang, Q.6
Ding, J.7
Jia, Y.8
Chen, Z.9
Li, L.10
-
18
-
-
84908204470
-
5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation
-
Hon, G.C., Song, C.X., Du, T., Jin, F., Selvaraj, S., Lee, A.Y., Yen, C.A., Ye, Z., Mao, S.Q., Wang, B.A., et al. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol. Cell 56 (2014), 286–297.
-
(2014)
Mol. Cell
, vol.56
, pp. 286-297
-
-
Hon, G.C.1
Song, C.X.2
Du, T.3
Jin, F.4
Selvaraj, S.5
Lee, A.Y.6
Yen, C.A.7
Ye, Z.8
Mao, S.Q.9
Wang, B.A.10
-
19
-
-
84894560490
-
Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation
-
Hu, L., Li, Z., Cheng, J., Rao, Q., Gong, W., Liu, M., Shi, Y.G., Zhu, J., Wang, P., Xu, Y., Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155 (2013), 1545–1555.
-
(2013)
Cell
, vol.155
, pp. 1545-1555
-
-
Hu, L.1
Li, Z.2
Cheng, J.3
Rao, Q.4
Gong, W.5
Liu, M.6
Shi, Y.G.7
Zhu, J.8
Wang, P.9
Xu, Y.10
-
20
-
-
84863618431
-
Acetylation-dependent regulation of Skp2 function
-
Inuzuka, H., Gao, D., Finley, L.W., Yang, W., Wan, L., Fukushima, H., Chin, Y.R., Zhai, B., Shaik, S., Lau, A.W., et al. Acetylation-dependent regulation of Skp2 function. Cell 150 (2012), 179–193.
-
(2012)
Cell
, vol.150
, pp. 179-193
-
-
Inuzuka, H.1
Gao, D.2
Finley, L.W.3
Yang, W.4
Wan, L.5
Fukushima, H.6
Chin, Y.R.7
Zhai, B.8
Shaik, S.9
Lau, A.W.10
-
21
-
-
77956189495
-
Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
-
Ito, S., D'Alessio, A.C., Taranova, O.V., Hong, K., Sowers, L.C., Zhang, Y., Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466 (2010), 1129–1133.
-
(2010)
Nature
, vol.466
, pp. 1129-1133
-
-
Ito, S.1
D'Alessio, A.C.2
Taranova, O.V.3
Hong, K.4
Sowers, L.C.5
Zhang, Y.6
-
22
-
-
80052461558
-
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
-
Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C., Zhang, Y., Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333 (2011), 1300–1303.
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
Shen, L.2
Dai, Q.3
Wu, S.C.4
Collins, L.B.5
Swenberg, J.A.6
He, C.7
Zhang, Y.8
-
23
-
-
84255200412
-
5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations
-
Jin, S.G., Jiang, Y., Qiu, R., Rauch, T.A., Wang, Y., Schackert, G., Krex, D., Lu, Q., Pfeifer, G.P., 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res. 71 (2011), 7360–7365.
-
(2011)
Cancer Res.
, vol.71
, pp. 7360-7365
-
-
Jin, S.G.1
Jiang, Y.2
Qiu, R.3
Rauch, T.A.4
Wang, Y.5
Schackert, G.6
Krex, D.7
Lu, Q.8
Pfeifer, G.P.9
-
24
-
-
33847065486
-
The epigenomics of cancer
-
Jones, P.A., Baylin, S.B., The epigenomics of cancer. Cell 128 (2007), 683–692.
-
(2007)
Cell
, vol.128
, pp. 683-692
-
-
Jones, P.A.1
Baylin, S.B.2
-
25
-
-
84958103136
-
5-Hydroxymethylcytosine marks sites of DNA damage and promotes genome stability
-
Kafer, G.R., Li, X., Horii, T., Suetake, I., Tajima, S., Hatada, I., Carlton, P.M., 5-Hydroxymethylcytosine marks sites of DNA damage and promotes genome stability. Cell Rep. 14 (2016), 1283–1292.
-
(2016)
Cell Rep.
, vol.14
, pp. 1283-1292
-
-
Kafer, G.R.1
Li, X.2
Horii, T.3
Suetake, I.4
Tajima, S.5
Hatada, I.6
Carlton, P.M.7
-
26
-
-
78650175023
-
Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2
-
Ko, M., Huang, Y., Jankowska, A.M., Pape, U.J., Tahiliani, M., Bandukwala, H.S., An, J., Lamperti, E.D., Koh, K.P., Ganetzky, R., et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468 (2010), 839–843.
-
(2010)
Nature
, vol.468
, pp. 839-843
-
-
Ko, M.1
Huang, Y.2
Jankowska, A.M.3
Pape, U.J.4
Tahiliani, M.5
Bandukwala, H.S.6
An, J.7
Lamperti, E.D.8
Koh, K.P.9
Ganetzky, R.10
-
27
-
-
84877582944
-
Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX
-
Ko, M., An, J., Bandukwala, H.S., Chavez, L., Aijö, T., Pastor, W.A., Segal, M.F., Li, H., Koh, K.P., Lähdesmäki, H., et al. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497 (2013), 122–126.
-
(2013)
Nature
, vol.497
, pp. 122-126
-
-
Ko, M.1
An, J.2
Bandukwala, H.S.3
Chavez, L.4
Aijö, T.5
Pastor, W.A.6
Segal, M.F.7
Li, H.8
Koh, K.P.9
Lähdesmäki, H.10
-
28
-
-
84886860116
-
TET enzymes, TDG and the dynamics of DNA demethylation
-
Kohli, R.M., Zhang, Y., TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502 (2013), 472–479.
-
(2013)
Nature
, vol.502
, pp. 472-479
-
-
Kohli, R.M.1
Zhang, Y.2
-
29
-
-
67649876132
-
Acquired mutations in TET2 are common in myelodysplastic syndromes
-
Langemeijer, S.M., Kuiper, R.P., Berends, M., Knops, R., Aslanyan, M.G., Massop, M., Stevens-Linders, E., van Hoogen, P., van Kessel, A.G., Raymakers, R.A., et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat. Genet. 41 (2009), 838–842.
-
(2009)
Nat. Genet.
, vol.41
, pp. 838-842
-
-
Langemeijer, S.M.1
Kuiper, R.P.2
Berends, M.3
Knops, R.4
Aslanyan, M.G.5
Massop, M.6
Stevens-Linders, E.7
van Hoogen, P.8
van Kessel, A.G.9
Raymakers, R.A.10
-
30
-
-
84907507329
-
Role of Tet proteins in enhancer activity and telomere elongation
-
Lu, F., Liu, Y., Jiang, L., Yamaguchi, S., Zhang, Y., Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev. 28 (2014), 2103–2119.
-
(2014)
Genes Dev.
, vol.28
, pp. 2103-2119
-
-
Lu, F.1
Liu, Y.2
Jiang, L.3
Yamaguchi, S.4
Zhang, Y.5
-
31
-
-
84921454586
-
CRL4(VprBP) E3 ligase promotes monoubiquitylation and chromatin binding of TET dioxygenases
-
Nakagawa, T., Lv, L., Nakagawa, M., Yu, Y., Yu, C., D'Alessio, A.C., Nakayama, K., Fan, H.Y., Chen, X., Xiong, Y., CRL4(VprBP) E3 ligase promotes monoubiquitylation and chromatin binding of TET dioxygenases. Mol. Cell 57 (2015), 247–260.
-
(2015)
Mol. Cell
, vol.57
, pp. 247-260
-
-
Nakagawa, T.1
Lv, L.2
Nakagawa, M.3
Yu, Y.4
Yu, C.5
D'Alessio, A.C.6
Nakayama, K.7
Fan, H.Y.8
Chen, X.9
Xiong, Y.10
-
32
-
-
50849104569
-
Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island
-
O'Hagan, H.M., Mohammad, H.P., Baylin, S.B., Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet., 4, 2008, e1000155.
-
(2008)
PLoS Genet.
, vol.4
, pp. e1000155
-
-
O'Hagan, H.M.1
Mohammad, H.P.2
Baylin, S.B.3
-
33
-
-
81255162523
-
Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands
-
O'Hagan, H.M., Wang, W., Sen, S., Destefano Shields, C., Lee, S.S., Zhang, Y.W., Clements, E.G., Cai, Y., Van Neste, L., Easwaran, H., et al. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 20 (2011), 606–619.
-
(2011)
Cancer Cell
, vol.20
, pp. 606-619
-
-
O'Hagan, H.M.1
Wang, W.2
Sen, S.3
Destefano Shields, C.4
Lee, S.S.5
Zhang, Y.W.6
Clements, E.G.7
Cai, Y.8
Van Neste, L.9
Easwaran, H.10
-
34
-
-
84878260646
-
TETonic shift: biological roles of TET proteins in DNA demethylation and transcription
-
Pastor, W.A., Aravind, L., Rao, A., TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14 (2013), 341–356.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 341-356
-
-
Pastor, W.A.1
Aravind, L.2
Rao, A.3
-
35
-
-
84929461859
-
Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis
-
Rasmussen, K.D., Jia, G., Johansen, J.V., Pedersen, M.T., Rapin, N., Bagger, F.O., Porse, B.T., Bernard, O.A., Christensen, J., Helin, K., Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev. 29 (2015), 910–922.
-
(2015)
Genes Dev.
, vol.29
, pp. 910-922
-
-
Rasmussen, K.D.1
Jia, G.2
Johansen, J.V.3
Pedersen, M.T.4
Rapin, N.5
Bagger, F.O.6
Porse, B.T.7
Bernard, O.A.8
Christensen, J.9
Helin, K.10
-
36
-
-
84939165575
-
TET proteins and the control of cytosine demethylation in cancer
-
Scourzic, L., Mouly, E., Bernard, O.A., TET proteins and the control of cytosine demethylation in cancer. Genome Med., 7, 2015, 9.
-
(2015)
Genome Med.
, vol.7
, pp. 9
-
-
Scourzic, L.1
Mouly, E.2
Bernard, O.A.3
-
37
-
-
84892765883
-
Genome-scale CRISPR-Cas9 knockout screening in human cells
-
Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S., Heckl, D., Ebert, B.L., Root, D.E., Doench, J.G., Zhang, F., Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343 (2014), 84–87.
-
(2014)
Science
, vol.343
, pp. 84-87
-
-
Shalem, O.1
Sanjana, N.E.2
Hartenian, E.3
Shi, X.4
Scott, D.A.5
Mikkelsen, T.S.6
Heckl, D.7
Ebert, B.L.8
Root, D.E.9
Doench, J.G.10
Zhang, F.11
-
38
-
-
84875745673
-
Interplay between the cancer genome and epigenome
-
Shen, H., Laird, P.W., Interplay between the cancer genome and epigenome. Cell 153 (2013), 38–55.
-
(2013)
Cell
, vol.153
, pp. 38-55
-
-
Shen, H.1
Laird, P.W.2
-
39
-
-
84876907152
-
Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming
-
Song, C.X., Szulwach, K.E., Dai, Q., Fu, Y., Mao, S.Q., Lin, L., Street, C., Li, Y., Poidevin, M., Wu, H., et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153 (2013), 678–691.
-
(2013)
Cell
, vol.153
, pp. 678-691
-
-
Song, C.X.1
Szulwach, K.E.2
Dai, Q.3
Fu, Y.4
Mao, S.Q.5
Lin, L.6
Street, C.7
Li, Y.8
Poidevin, M.9
Wu, H.10
-
40
-
-
84880571480
-
The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation
-
Song, S.J., Ito, K., Ala, U., Kats, L., Webster, K., Sun, S.M., Jongen-Lavrencic, M., Manova-Todorova, K., Teruya-Feldstein, J., Avigan, D.E., et al. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 13 (2013), 87–101.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 87-101
-
-
Song, S.J.1
Ito, K.2
Ala, U.3
Kats, L.4
Webster, K.5
Sun, S.M.6
Jongen-Lavrencic, M.7
Manova-Todorova, K.8
Teruya-Feldstein, J.9
Avigan, D.E.10
-
41
-
-
84927714053
-
oxBS-450K: a method for analysing hydroxymethylation using 450K BeadChips
-
Stewart, S.K., Morris, T.J., Guilhamon, P., Bulstrode, H., Bachman, M., Balasubramanian, S., Beck, S., oxBS-450K: a method for analysing hydroxymethylation using 450K BeadChips. Methods 72 (2015), 9–15.
-
(2015)
Methods
, vol.72
, pp. 9-15
-
-
Stewart, S.K.1
Morris, T.J.2
Guilhamon, P.3
Bulstrode, H.4
Bachman, M.5
Balasubramanian, S.6
Beck, S.7
-
42
-
-
66149146320
-
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
-
Tahiliani, M., Koh, K.P., Shen, Y., Pastor, W.A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L.M., Liu, D.R., Aravind, L., Rao, A., Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324 (2009), 930–935.
-
(2009)
Science
, vol.324
, pp. 930-935
-
-
Tahiliani, M.1
Koh, K.P.2
Shen, Y.3
Pastor, W.A.4
Bandukwala, H.5
Brudno, Y.6
Agarwal, S.7
Iyer, L.M.8
Liu, D.R.9
Aravind, L.10
Rao, A.11
-
43
-
-
84920269464
-
Proteomics. Tissue-based map of the human proteome
-
Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., et al. Proteomics. Tissue-based map of the human proteome. Science, 347, 2015, 1260419.
-
(2015)
Science
, vol.347
, pp. 1260419
-
-
Uhlén, M.1
Fagerberg, L.2
Hallström, B.M.3
Lindskog, C.4
Oksvold, P.5
Mardinoglu, A.6
Sivertsson, Å.7
Kampf, C.8
Sjöstedt, E.9
Asplund, A.10
-
44
-
-
84895911033
-
Regulation of TET protein stability by calpains
-
Wang, Y., Zhang, Y., Regulation of TET protein stability by calpains. Cell Rep. 6 (2014), 278–284.
-
(2014)
Cell Rep.
, vol.6
, pp. 278-284
-
-
Wang, Y.1
Zhang, Y.2
-
45
-
-
84883307077
-
Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation
-
Weinert, B.T., Schölz, C., Wagner, S.A., Iesmantavicius, V., Su, D., Daniel, J.A., Choudhary, C., Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep. 4 (2013), 842–851.
-
(2013)
Cell Rep.
, vol.4
, pp. 842-851
-
-
Weinert, B.T.1
Schölz, C.2
Wagner, S.A.3
Iesmantavicius, V.4
Su, D.5
Daniel, J.A.6
Choudhary, C.7
-
46
-
-
84555189745
-
DNA methylation: TET proteins-guardians of CpG islands?
-
Williams, K., Christensen, J., Helin, K., DNA methylation: TET proteins-guardians of CpG islands?. EMBO Rep. 13 (2011), 28–35.
-
(2011)
EMBO Rep.
, vol.13
, pp. 28-35
-
-
Williams, K.1
Christensen, J.2
Helin, K.3
-
47
-
-
84892763878
-
Reversing DNA methylation: mechanisms, genomics, and biological functions
-
Wu, H., Zhang, Y., Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156 (2014), 45–68.
-
(2014)
Cell
, vol.156
, pp. 45-68
-
-
Wu, H.1
Zhang, Y.2
-
48
-
-
60849115270
-
IDH1 and IDH2 mutations in gliomas
-
Yan, H., Parsons, D.W., Jin, G., McLendon, R., Rasheed, B.A., Yuan, W., Kos, I., Batinic-Haberle, I., Jones, S., Riggins, G.J., et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360 (2009), 765–773.
-
(2009)
N. Engl. J. Med.
, vol.360
, pp. 765-773
-
-
Yan, H.1
Parsons, D.W.2
Jin, G.3
McLendon, R.4
Rasheed, B.A.5
Yuan, W.6
Kos, I.7
Batinic-Haberle, I.8
Jones, S.9
Riggins, G.J.10
-
49
-
-
84873411803
-
Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation
-
Yang, H., Liu, Y., Bai, F., Zhang, J.Y., Ma, S.H., Liu, J., Xu, Z.D., Zhu, H.G., Ling, Z.Q., Ye, D., et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32 (2013), 663–669.
-
(2013)
Oncogene
, vol.32
, pp. 663-669
-
-
Yang, H.1
Liu, Y.2
Bai, F.3
Zhang, J.Y.4
Ma, S.H.5
Liu, J.6
Xu, Z.D.7
Zhu, H.G.8
Ling, Z.Q.9
Ye, D.10
-
50
-
-
84861990517
-
Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome
-
Yu, M., Hon, G.C., Szulwach, K.E., Song, C.X., Zhang, L., Kim, A., Li, X., Dai, Q., Shen, Y., Park, B., et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149 (2012), 1368–1380.
-
(2012)
Cell
, vol.149
, pp. 1368-1380
-
-
Yu, M.1
Hon, G.C.2
Szulwach, K.E.3
Song, C.X.4
Zhang, L.5
Kim, A.6
Li, X.7
Dai, Q.8
Shen, Y.9
Park, B.10
|