메뉴 건너뛰기




Volumn 1-2, Issue , 2016, Pages 22-35

3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration

Author keywords

3D bioprinting; Ear cartilage; Nanofibrillated cellulose; Nasal chondrocytes; Neo cartilage; Tissue engineering

Indexed keywords

ACTIN; AGGRECAN; ALGINIC ACID; CALCEIN; CARTILAGE OLIGOMERIC MATRIX PROTEIN; CELLULOSE; COLLAGEN; DIMETHYL SULFOXIDE; GELATIN; GELATINASE; GLYCOSAMINOGLYCAN; MATRILIN 3; MATRIX METALLOPROTEINASE; TRANSCRIPTION FACTOR RUNX2; TRANSCRIPTION FACTOR SOX9; VERSICAN;

EID: 85010204711     PISSN: 24058866     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.bprint.2016.08.003     Document Type: Article
Times cited : (214)

References (61)
  • 1
    • 77957749418 scopus 로고    scopus 로고
    • Psychosocial outcomes among microtia patients of different ages and genders before ear reconstruction
    • [1] Li, D., Chin, W., Wu, J., Zhang, Q., Xu, F., Xu, Z., et al. Psychosocial outcomes among microtia patients of different ages and genders before ear reconstruction. Aesthet. Plast. Surg. 34 (2010), 570–576.
    • (2010) Aesthet. Plast. Surg. , vol.34 , pp. 570-576
    • Li, D.1    Chin, W.2    Wu, J.3    Zhang, Q.4    Xu, F.5    Xu, Z.6
  • 4
    • 0030932346 scopus 로고    scopus 로고
    • Chest wall deformities and thoracic scoliosis after costal cartilage graft harvesting
    • [4] Ohara, K., Nakamura, K., Ohta, E., Chest wall deformities and thoracic scoliosis after costal cartilage graft harvesting. Plast. Reconstr. Surg. 99 (1997), 1030–1036.
    • (1997) Plast. Reconstr. Surg. , vol.99 , pp. 1030-1036
    • Ohara, K.1    Nakamura, K.2    Ohta, E.3
  • 5
    • 18244366662 scopus 로고    scopus 로고
    • Tissue engineering-current challenges and expanding opportunities
    • [5] Griffith, L.G., Naughton, G., Tissue engineering-current challenges and expanding opportunities. Science 295 (2002), 1009–1014.
    • (2002) Science , vol.295 , pp. 1009-1014
    • Griffith, L.G.1    Naughton, G.2
  • 6
    • 0027595948 scopus 로고
    • Tissue engineering
    • [6] Langer, R., Vacanti, J.P., Tissue engineering. Science 260 (1993), 920–926.
    • (1993) Science , vol.260 , pp. 920-926
    • Langer, R.1    Vacanti, J.P.2
  • 7
    • 0347124676 scopus 로고    scopus 로고
    • Tissue engineering auricular reconstruction: in vitro and in vivo studies
    • [7] Shieh, S.J., Terada, S., Vacanti, J.P., Tissue engineering auricular reconstruction: in vitro and in vivo studies. Biomaterials 25 (2004), 1545–1557.
    • (2004) Biomaterials , vol.25 , pp. 1545-1557
    • Shieh, S.J.1    Terada, S.2    Vacanti, J.P.3
  • 11
    • 34447260532 scopus 로고    scopus 로고
    • Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation
    • [11] Ilkhanizadeh, S., Teixeira, A., Hermanson, O., Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials 28 (2007), 3936–3943.
    • (2007) Biomaterials , vol.28 , pp. 3936-3943
    • Ilkhanizadeh, S.1    Teixeira, A.2    Hermanson, O.3
  • 12
    • 77952545276 scopus 로고    scopus 로고
    • Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture
    • [12] Lee, Y.B., Polio, S., Lee, W., Dai, G., Menon, L., Carroll, R.S., et al. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol. 223 (2010), 645–652.
    • (2010) Exp. Neurol. , vol.223 , pp. 645-652
    • Lee, Y.B.1    Polio, S.2    Lee, W.3    Dai, G.4    Menon, L.5    Carroll, R.S.6
  • 13
  • 14
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • [14] Murphy, S.V., Atala, A., 3D bioprinting of tissues and organs. Nat. Biotechnol. 32 (2014), 773–785.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 15
    • 84896548221 scopus 로고    scopus 로고
    • Current trends in the design of scaffolds for computer-aided tissue engineering
    • [15] Giannitelli, S.M., Accoto, D., Trombetta, M., Rainer, A., Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater. 10 (2014), 580–594.
    • (2014) Acta Biomater. , vol.10 , pp. 580-594
    • Giannitelli, S.M.1    Accoto, D.2    Trombetta, M.3    Rainer, A.4
  • 17
    • 84872681726 scopus 로고    scopus 로고
    • Evaluation of hydrogels for bio-printing applications
    • [17] Murphy, S.V., Skardal, A., Atala, A., Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A 101 (2013), 272–284.
    • (2013) J. Biomed. Mater. Res. A , vol.101 , pp. 272-284
    • Murphy, S.V.1    Skardal, A.2    Atala, A.3
  • 18
    • 84898059103 scopus 로고    scopus 로고
    • Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells
    • [18] Duan, B., Kapetanovic, E., Hockaday, L.A., Butcher, J.T., Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10 (2014), 1836–1846.
    • (2014) Acta Biomater. , vol.10 , pp. 1836-1846
    • Duan, B.1    Kapetanovic, E.2    Hockaday, L.A.3    Butcher, J.T.4
  • 20
    • 84901923061 scopus 로고    scopus 로고
    • Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
    • [20] Pati, F., Jang, J., Ha, D.H., Won Kim, S., Rhie, J.W., Shim, J.H., et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun., 5, 2014, 3935.
    • (2014) Nat. Commun. , vol.5 , pp. 3935
    • Pati, F.1    Jang, J.2    Ha, D.H.3    Won Kim, S.4    Rhie, J.W.5    Shim, J.H.6
  • 21
    • 84878147219 scopus 로고    scopus 로고
    • Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs
    • [21] Schuurman, W., Levett, P.A., Pot, M.W., van Weeren, P.R., Dhert, W.J., Hutmacher, D.W., et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol. Biosci. 13 (2013), 551–561.
    • (2013) Macromol. Biosci. , vol.13 , pp. 551-561
    • Schuurman, W.1    Levett, P.A.2    Pot, M.W.3    van Weeren, P.R.4    Dhert, W.J.5    Hutmacher, D.W.6
  • 23
    • 80052638686 scopus 로고    scopus 로고
    • Bacterial cellulose-based materials and medical devices: current state and perspectives
    • [23] Petersen, N., Gatenholm, P., Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl. Microbiol. Biotechnol. 91 (2011), 1277–1286.
    • (2011) Appl. Microbiol. Biotechnol. , vol.91 , pp. 1277-1286
    • Petersen, N.1    Gatenholm, P.2
  • 24
    • 84921854261 scopus 로고    scopus 로고
    • Recent advances in nanocellulose for biomedical applications
    • n/a
    • [24] Jorfi, M., Foster, E.J., Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci., 132, 2015 n/a.
    • (2015) J. Appl. Polym. Sci. , vol.132
    • Jorfi, M.1    Foster, E.J.2
  • 26
    • 84906946389 scopus 로고    scopus 로고
    • Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration
    • [26] Martínez Ávila, H., Schwarz, S., Feldmann, E.-M., Mantas, A., von Bomhard, A., Gatenholm, P., et al. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl. Microbiol. Biotechnol. 98 (2014), 7423–7435.
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , pp. 7423-7435
    • Martínez Ávila, H.1    Schwarz, S.2    Feldmann, E.-M.3    Mantas, A.4    von Bomhard, A.5    Gatenholm, P.6
  • 27
    • 77957575140 scopus 로고    scopus 로고
    • Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion
    • [27] Bodin, A., Bharadwaj, S., Wu, S.F., Gatenholm, P., Atala, A., Zhang, Y.Y., Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31 (2010), 8889–8901.
    • (2010) Biomaterials , vol.31 , pp. 8889-8901
    • Bodin, A.1    Bharadwaj, S.2    Wu, S.F.3    Gatenholm, P.4    Atala, A.5    Zhang, Y.Y.6
  • 28
    • 80053640219 scopus 로고    scopus 로고
    • Results of the prospective, randomized, multicenter clinical trial evaluating a biosynthesized cellulose graft for repair of dural defects
    • [28] Rosen, C.L., Steinberg, G.K., DeMonte, F., Delashaw, J.B. Jr., Lewis, S.B., Shaffrey, M.E., et al. Results of the prospective, randomized, multicenter clinical trial evaluating a biosynthesized cellulose graft for repair of dural defects. Neurosurgery 69 (2011), 1093–1103.
    • (2011) Neurosurgery , vol.69 , pp. 1093-1103
    • Rosen, C.L.1    Steinberg, G.K.2    DeMonte, F.3    Delashaw, J.B.4    Lewis, S.B.5    Shaffrey, M.E.6
  • 30
    • 84898460722 scopus 로고    scopus 로고
    • Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels
    • [30] Malinen, M.M., Kanninen, L.K., Corlu, A., Isoniemi, H.M., Lou, Y.-R., Yliperttula, M.L., et al. Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials 35 (2014), 5110–5121.
    • (2014) Biomaterials , vol.35 , pp. 5110-5121
    • Malinen, M.M.1    Kanninen, L.K.2    Corlu, A.3    Isoniemi, H.M.4    Lou, Y.-R.5    Yliperttula, M.L.6
  • 31
    • 84895070057 scopus 로고    scopus 로고
    • Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants
    • [31] Ahrem, H., Pretzel, D., Endres, M., Conrad, D., Courseau, J., Muller, H., et al. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomater. 10 (2014), 1341–1353.
    • (2014) Acta Biomater. , vol.10 , pp. 1341-1353
    • Ahrem, H.1    Pretzel, D.2    Endres, M.3    Conrad, D.4    Courseau, J.5    Muller, H.6
  • 32
    • 84886781227 scopus 로고    scopus 로고
    • Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle
    • [32] Feldmann, E.M., Sundberg, J., Bobbili, B., Schwarz, S., Gatenholm, P., Rotter, N., Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle. J. Biomater. Appl., 2013.
    • (2013) J. Biomater. Appl.
    • Feldmann, E.M.1    Sundberg, J.2    Bobbili, B.3    Schwarz, S.4    Gatenholm, P.5    Rotter, N.6
  • 34
    • 84921311235 scopus 로고    scopus 로고
    • Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo
    • [34] Martínez Ávila, H., Feldmann, E.-M., Pleumeekers, M.M., Nimeskern, L., Kuo, W., de Jong, W.C., et al. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials 44 (2015), 122–133.
    • (2015) Biomaterials , vol.44 , pp. 122-133
    • Martínez Ávila, H.1    Feldmann, E.-M.2    Pleumeekers, M.M.3    Nimeskern, L.4    Kuo, W.5    de Jong, W.C.6
  • 35
    • 84929176653 scopus 로고    scopus 로고
    • 3D Bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications
    • [35] Markstedt, K., Mantas, A., Tournier, I., Martínez Ávila, H., Hägg, D., Gatenholm, P., 3D Bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16 (2015), 1489–1496.
    • (2015) Biomacromolecules , vol.16 , pp. 1489-1496
    • Markstedt, K.1    Mantas, A.2    Tournier, I.3    Martínez Ávila, H.4    Hägg, D.5    Gatenholm, P.6
  • 37
  • 38
    • 0142088795 scopus 로고    scopus 로고
    • Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation
    • [38] Malda, J., Kreijveld, E., Temenoff, J.S., Blitterswijk, C.Av, Riesle, J., Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation. Biomaterials 24 (2003), 5153–5161.
    • (2003) Biomaterials , vol.24 , pp. 5153-5161
    • Malda, J.1    Kreijveld, E.2    Temenoff, J.S.3    Blitterswijk, C.A.4    Riesle, J.5
  • 39
    • 0141618276 scopus 로고    scopus 로고
    • Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies
    • [39] Barbosa, I., Garcia, S., Barbier-Chassefiere, Ve, Caruelle, J.-P., Martelly, I., Papy-Garcia, D., Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology 13 (2003), 647–653.
    • (2003) Glycobiology , vol.13 , pp. 647-653
    • Barbosa, I.1    Garcia, S.2    Barbier-Chassefiere, V.3    Caruelle, J.-P.4    Martelly, I.5    Papy-Garcia, D.6
  • 40
    • 0030561210 scopus 로고    scopus 로고
    • Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue
    • [40] Enobakhare, B.O., Bader, D.L., Lee, D.A., Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. Anal. Biochem. 243 (1996), 189–191.
    • (1996) Anal. Biochem. , vol.243 , pp. 189-191
    • Enobakhare, B.O.1    Bader, D.L.2    Lee, D.A.3
  • 41
    • 44949231424 scopus 로고    scopus 로고
    • Analyzing real-time PCR data by the comparative C(T) method
    • [41] Schmittgen, T.D., Livak, K.J., Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3 (2008), 1101–1108.
    • (2008) Nat. Protoc. , vol.3 , pp. 1101-1108
    • Schmittgen, T.D.1    Livak, K.J.2
  • 42
    • 84883677010 scopus 로고    scopus 로고
    • Marine collagen scaffolds for nasal cartilage repair: prevention of nasal septal perforations in a new orthotopic rat model using tissue engineering techniques
    • [42] Bermueller, C., Schwarz, S., Elsaesser, A.F., Sewing, J., Baur, N., von Bomhard, A., et al. Marine collagen scaffolds for nasal cartilage repair: prevention of nasal septal perforations in a new orthotopic rat model using tissue engineering techniques. Tissue Eng. Part A 19 (2013), 2201–2214.
    • (2013) Tissue Eng. Part A , vol.19 , pp. 2201-2214
    • Bermueller, C.1    Schwarz, S.2    Elsaesser, A.F.3    Sewing, J.4    Baur, N.5    von Bomhard, A.6
  • 43
    • 84890731330 scopus 로고    scopus 로고
    • Translational study between structure and biological response of nanocellulose from wood and green algae
    • [43] Hua, K., Carlsson, D.O., Ålander, E., Lindström, T., Strømme, M., Mihranyan, A., et al. Translational study between structure and biological response of nanocellulose from wood and green algae. RSC Adv., 4, 2014, 2892.
    • (2014) RSC Adv. , vol.4 , pp. 2892
    • Hua, K.1    Carlsson, D.O.2    Ålander, E.3    Lindström, T.4    Strømme, M.5    Mihranyan, A.6
  • 44
    • 34347351398 scopus 로고    scopus 로고
    • Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels
    • [44] Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8 (2007), 1934–1941.
    • (2007) Biomacromolecules , vol.8 , pp. 1934-1941
    • Pääkkö, M.1    Ankerfors, M.2    Kosonen, H.3    Nykänen, A.4    Ahola, S.5    Österberg, M.6
  • 46
    • 81855185597 scopus 로고    scopus 로고
    • Chondrocyte redifferentiation in 3D: the effect of adhesion site density and substrate elasticity
    • [46] Schuh, E., Hofmann, S., Stok, K., Notbohm, H., Müller, R., Rotter, N., Chondrocyte redifferentiation in 3D: the effect of adhesion site density and substrate elasticity. J. Biomed. Mater. Res. A 100A (2012), 38–47.
    • (2012) J. Biomed. Mater. Res. A , vol.100A , pp. 38-47
    • Schuh, E.1    Hofmann, S.2    Stok, K.3    Notbohm, H.4    Müller, R.5    Rotter, N.6
  • 47
    • 84955186091 scopus 로고    scopus 로고
    • Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function
    • [47] Schwarz, S., Elsaesser, A.F., Koerber, L., Goldberg-Bockhorn, E., Seitz, A.M., Bermueller, C., et al. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function. J. Tissue Eng. Regen. Med., 2012.
    • (2012) J. Tissue Eng. Regen. Med.
    • Schwarz, S.1    Elsaesser, A.F.2    Koerber, L.3    Goldberg-Bockhorn, E.4    Seitz, A.M.5    Bermueller, C.6
  • 48
    • 0035183587 scopus 로고    scopus 로고
    • Paracrine interactions of chondrocytes and macrophages in cartilage degradation: articular chondrocytes provide factors that activate macrophage-derived pro-gelatinase B (pro-MMP-9)
    • [48] Dreier, R., Wallace, S., Fuchs, S., Bruckner, P., Grassel, S., Paracrine interactions of chondrocytes and macrophages in cartilage degradation: articular chondrocytes provide factors that activate macrophage-derived pro-gelatinase B (pro-MMP-9). J. Cell Sci. 114 (2001), 3813–3822.
    • (2001) J. Cell Sci. , vol.114 , pp. 3813-3822
    • Dreier, R.1    Wallace, S.2    Fuchs, S.3    Bruckner, P.4    Grassel, S.5
  • 49
    • 84870389936 scopus 로고    scopus 로고
    • Recent findings on the role of gelatinases (matrix metalloproteinase-2 and −9) in osteoarthritis
    • [49] Galasso, O., Familiari, F., De Gori, M., Gasparini, G., Recent findings on the role of gelatinases (matrix metalloproteinase-2 and −9) in osteoarthritis. Adv. Orthop. 2012 (2012), 1–7.
    • (2012) Adv. Orthop. , vol.2012 , pp. 1-7
    • Galasso, O.1    Familiari, F.2    De Gori, M.3    Gasparini, G.4
  • 50
    • 79961243216 scopus 로고    scopus 로고
    • The secretory profiles of cultured human articular chondrocytes and mesenchymal stem cells: implications for autologous cell transplantation strategies
    • [50] Polacek, M., Bruun, J.-A., Elvenes, J., Figenschau, Y., Martinez, I., The secretory profiles of cultured human articular chondrocytes and mesenchymal stem cells: implications for autologous cell transplantation strategies. Cell Transplant. 20 (2011), 1381–1393.
    • (2011) Cell Transplant. , vol.20 , pp. 1381-1393
    • Polacek, M.1    Bruun, J.-A.2    Elvenes, J.3    Figenschau, Y.4    Martinez, I.5
  • 51
    • 78649451431 scopus 로고    scopus 로고
    • The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts
    • [51] Nuernberger, S., Cyran, N., Albrecht, C., Redl, H., Vécsei, V., Marlovits, S., The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts. Biomaterials 32 (2011), 1032–1040.
    • (2011) Biomaterials , vol.32 , pp. 1032-1040
    • Nuernberger, S.1    Cyran, N.2    Albrecht, C.3    Redl, H.4    Vécsei, V.5    Marlovits, S.6
  • 53
    • 0000958271 scopus 로고    scopus 로고
    • Toward understanding SOX9 function in chondrocyte differentiation
    • [53] Lefebvre, V., de Crombrugghe, B., Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol. 16 (1998), 529–540.
    • (1998) Matrix Biol. , vol.16 , pp. 529-540
    • Lefebvre, V.1    de Crombrugghe, B.2
  • 54
    • 84865301793 scopus 로고    scopus 로고
    • Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures
    • [54] Caron, M.M.J., Emans, P.J., Coolsen, M.M.E., Voss, L., Surtel, D.A.M., Cremers, A., et al. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthr. Cartil. 20 (2012), 1170–1178.
    • (2012) Osteoarthr. Cartil. , vol.20 , pp. 1170-1178
    • Caron, M.M.J.1    Emans, P.J.2    Coolsen, M.M.E.3    Voss, L.4    Surtel, D.A.M.5    Cremers, A.6
  • 55
    • 0036772920 scopus 로고    scopus 로고
    • Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes
    • [55] Kafienah, W., Jakob, M., Demarteau, O., Frazer, A., Barker, M.D., Martin, I., et al. Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes. Tissue Eng. 8 (2002), 817–826.
    • (2002) Tissue Eng. , vol.8 , pp. 817-826
    • Kafienah, W.1    Jakob, M.2    Demarteau, O.3    Frazer, A.4    Barker, M.D.5    Martin, I.6
  • 56
    • 84898426424 scopus 로고    scopus 로고
    • The in vitro and in vivo capacity of culture-expanded human cells from several sources encapsulated in alginate to form cartilage
    • discussion 78-80
    • [56] Pleumeekers, M.M., Nimeskern, L., Koevoet, W.L., Kops, N., Poublon, R.M., Stok, K.S., et al. The in vitro and in vivo capacity of culture-expanded human cells from several sources encapsulated in alginate to form cartilage. Eur. Cell Mater. 27 (2014), 264–280 discussion 78-80.
    • (2014) Eur. Cell Mater. , vol.27 , pp. 264-280
    • Pleumeekers, M.M.1    Nimeskern, L.2    Koevoet, W.L.3    Kops, N.4    Poublon, R.M.5    Stok, K.S.6
  • 57
    • 0035881709 scopus 로고    scopus 로고
    • Cartilage oligomeric matrix protein (COMP) and collagen IX are sensitive markers for the differentiation state of articular primary chondrocytes
    • [57] Zaucke, F., Dinser, R., Maurer, P., Paulsson, M., Cartilage oligomeric matrix protein (COMP) and collagen IX are sensitive markers for the differentiation state of articular primary chondrocytes. Biochem. J. 358 (2001), 17–24.
    • (2001) Biochem. J. , vol.358 , pp. 17-24
    • Zaucke, F.1    Dinser, R.2    Maurer, P.3    Paulsson, M.4
  • 58
    • 33645875892 scopus 로고    scopus 로고
    • Gene expression profiling of human articular cartilage grafts generated by tissue engineering
    • [58] Kaps, C., Frauenschuh, S., Endres, M., Ringe, J., Haisch, A., Lauber, J., et al. Gene expression profiling of human articular cartilage grafts generated by tissue engineering. Biomaterials, 2006.
    • (2006) Biomaterials
    • Kaps, C.1    Frauenschuh, S.2    Endres, M.3    Ringe, J.4    Haisch, A.5    Lauber, J.6
  • 59
    • 84918527043 scopus 로고    scopus 로고
    • Matrilin-3 Inhibits chondrocyte hypertrophy as a bone morphogenetic protein-2 antagonist
    • [59] Yang, X., Trehan, S.K., Guan, Y., Sun, C., Moore, D.C., Jayasuriya, C.T., et al. Matrilin-3 Inhibits chondrocyte hypertrophy as a bone morphogenetic protein-2 antagonist. J. Biol. Chem. 289 (2014), 34768–34779.
    • (2014) J. Biol. Chem. , vol.289 , pp. 34768-34779
    • Yang, X.1    Trehan, S.K.2    Guan, Y.3    Sun, C.4    Moore, D.C.5    Jayasuriya, C.T.6
  • 60
    • 33846528464 scopus 로고    scopus 로고
    • Pericellular matrilins regulate activation of chondrocytes by cyclic load-induced matrix deformation
    • [60] Kanbe, K., Yang, X., Wei, L., Sun, C., Chen, Q., Pericellular matrilins regulate activation of chondrocytes by cyclic load-induced matrix deformation. J. Bone Miner. Res. 22 (2006), 318–328.
    • (2006) J. Bone Miner. Res. , vol.22 , pp. 318-328
    • Kanbe, K.1    Yang, X.2    Wei, L.3    Sun, C.4    Chen, Q.5
  • 61
    • 34547573300 scopus 로고    scopus 로고
    • Abnormal collagen fibrils in cartilage of matrilin-1/matrilin-3-deficient mice
    • [61] Nicolae, C., Ko, Y.P., Miosge, N., Niehoff, A., Studer, D., Enggist, L., et al. Abnormal collagen fibrils in cartilage of matrilin-1/matrilin-3-deficient mice. J. Biol. Chem. 282 (2007), 22163–22175.
    • (2007) J. Biol. Chem. , vol.282 , pp. 22163-22175
    • Nicolae, C.1    Ko, Y.P.2    Miosge, N.3    Niehoff, A.4    Studer, D.5    Enggist, L.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.