메뉴 건너뛰기




Volumn 18, Issue 9, 2017, Pages 2340-2350

An Improved Fuzzy Neural Network for Traffic Speed Prediction Considering Periodic Characteristic

Author keywords

evolving fuzzy neural network; K means clustering; remote traffic microwave sensors; Speed prediction

Indexed keywords

FORECASTING; FUZZY LOGIC; FUZZY NEURAL NETWORKS; MEMBERSHIP FUNCTIONS; MICROWAVE SENSORS; NEURAL NETWORKS;

EID: 85009910034     PISSN: 15249050     EISSN: None     Source Type: Journal    
DOI: 10.1109/TITS.2016.2643005     Document Type: Article
Times cited : (343)

References (46)
  • 1
    • 84905404432 scopus 로고    scopus 로고
    • Performance and challenges in utilizing non-intrusive sensors for traffic data collection
    • X. Yu and P. D. Prevedouros, "Performance and challenges in utilizing non-intrusive sensors for traffic data collection, " Adv. Remote Sens., vol. 2, no. 2, pp. 45-50, 2013.
    • (2013) Adv. Remote Sens. , vol.2 , Issue.2 , pp. 45-50
    • Yu, X.1    Prevedouros, P.D.2
  • 2
    • 4444369422 scopus 로고    scopus 로고
    • Short-term traffic forecasting: Overview of objectives and methods
    • E. I. Vlahogianni, J. C. Golias, and M. G. Karlaftis, "Short-term traffic forecasting: Overview of objectives and methods, " Transp. Rev., vol. 24, no. 5, pp. 533-557, 2004.
    • (2004) Transp. Rev. , vol.24 , Issue.5 , pp. 533-557
    • Vlahogianni, E.I.1    Golias, J.C.2    Karlaftis, M.G.3
  • 3
  • 4
    • 84902538246 scopus 로고    scopus 로고
    • Short term traffic and travel time prediction models
    • R. Chowdhury and S. Sadek, Eds. Washington, DC, USA: National Academy Press, Nov.
    • J. W. C. Van Lint and C. P. I. J. Van Hinsbergen, "Short term traffic and travel time prediction models, " in Transportation Research Circular, R. Chowdhury and S. Sadek, Eds. Washington, DC, USA: National Academy Press, Nov. 2012.
    • (2012) Transportation Research Circular
    • Van Lint, J.W.C.1    Van Hinsbergen, C.P.I.J.2
  • 5
    • 33847119831 scopus 로고    scopus 로고
    • Short-term traffic flow prediction with regime switching models
    • Apr.
    • M. Cetin and G. Comert, "Short-term traffic flow prediction with regime switching models, " Transp. Res. Rec., vol. 1965, pp. 23-31, Apr. 2006.
    • (2006) Transp. Res. Rec. , vol.1965 , pp. 23-31
    • Cetin, M.1    Comert, G.2
  • 6
    • 84925966105 scopus 로고    scopus 로고
    • Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
    • May
    • X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang, "Long short-term memory neural network for traffic speed prediction using remote microwave sensor data, " Transp. Res. C, Emerg. Technol., vol. 54, pp. 187-197, May 2015.
    • (2015) Transp. Res. C, Emerg. Technol. , vol.54 , pp. 187-197
    • Ma, X.1    Tao, Z.2    Wang, Y.3    Yu, H.4    Wang, Y.5
  • 7
    • 13544252457 scopus 로고    scopus 로고
    • Chaotic analysis of traffic time series
    • Jul.
    • P. Shang, X. Li, and S. Kamae, "Chaotic analysis of traffic time series, " Chaos, Solitons Fractals, vol. 25, pp. 121-128, Jul. 2005.
    • (2005) Chaos, Solitons Fractals , vol.25 , pp. 121-128
    • Shang, P.1    Li, X.2    Kamae, S.3
  • 8
    • 56749160623 scopus 로고    scopus 로고
    • Cross-correlation analysis and multivariate prediction of spatial time series of freeway traffic speeds
    • Sep.
    • S. R. Chandra and H. Al-Deek, "Cross-correlation analysis and multivariate prediction of spatial time series of freeway traffic speeds, " Transp. Res. C, Emerg. Technol., vol. 2061, pp. 64-76, Sep. 2008.
    • (2008) Transp. Res. C, Emerg. Technol. , vol.2061 , pp. 64-76
    • Chandra, S.R.1    Al-Deek, H.2
  • 9
    • 84926504440 scopus 로고    scopus 로고
    • Component GARCH models to account for seasonal patterns and uncertainties in travel-time prediction
    • Feb.
    • Y. Zhang, A. Haghani, and X. Zeng, "Component GARCH models to account for seasonal patterns and uncertainties in travel-time prediction, " IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 719-729, Feb. 2015.
    • (2015) IEEE Trans. Intell. Transp. Syst. , vol.16 , Issue.2 , pp. 719-729
    • Zhang, Y.1    Haghani, A.2    Zeng, X.3
  • 10
    • 84940460996 scopus 로고    scopus 로고
    • Robust causal dependence mining in big data network and its application to traffic flow predictions
    • Sep.
    • L. Li, X. Su, Y. Wang, Y. Lin, Z. Li, and Y. Li, "Robust causal dependence mining in big data network and its application to traffic flow predictions, " Transp. Res. C, Emerg. Technol., vol. 58, pp. 292-307, Sep. 2015.
    • (2015) Transp. Res. C, Emerg. Technol. , vol.58 , pp. 292-307
    • Li, L.1    Su, X.2    Wang, Y.3    Lin, Y.4    Li, Z.5    Li, Y.6
  • 11
    • 84938278236 scopus 로고    scopus 로고
    • Hybrid short-term freeway speed prediction methods based on periodic analysis
    • Y. Zou, X. Hua, Y. Zhang, and Y. Wang, "Hybrid short-term freeway speed prediction methods based on periodic analysis, " Can. J. Civil Eng., vol. 42, no. 8, pp. 570-582, 2015.
    • (2015) Can. J. Civil Eng. , vol.42 , Issue.8 , pp. 570-582
    • Zou, Y.1    Hua, X.2    Zhang, Y.3    Wang, Y.4
  • 12
    • 84870549790 scopus 로고    scopus 로고
    • Short-term traffic speed forecasting based on data recorded at irregular intervals
    • Dec.
    • Q. Ye, W. Y. Szeto, and S. C. Wong, "Short-term traffic speed forecasting based on data recorded at irregular intervals, " IEEE Trans. Intell. Transp. Syst., vol. 13, no. 4, pp. 1727-1737, Dec. 2012.
    • (2012) IEEE Trans. Intell. Transp. Syst. , vol.13 , Issue.4 , pp. 1727-1737
    • Ye, Q.1    Szeto, W.Y.2    Wong, S.C.3
  • 13
    • 84925014499 scopus 로고    scopus 로고
    • Large-scale transportation network congestion evolution prediction using deep learning theory
    • X. Ma, H. Yu, Y. Wang, and Y. Wang, "Large-scale transportation network congestion evolution prediction using deep learning theory, " PLoS ONE, vol. 10, no. 3, p. e0119044, 2015.
    • (2015) PLoS ONE , vol.10 , Issue.3 , pp. e0119044
    • Ma, X.1    Yu, H.2    Wang, Y.3    Wang, Y.4
  • 14
    • 33646762818 scopus 로고    scopus 로고
    • Accurate freeway travel time prediction with state-space neural networks under missing data
    • Oct.
    • J. W. C. Van Lint, S. P. Hoogendoorn, and H. J. Van Zuylen, "Accurate freeway travel time prediction with state-space neural networks under missing data, " Transp. Res. C, Emerg. Technol., vol. 13, pp. 347-369, Oct. 2005.
    • (2005) Transp. Res. C, Emerg. Technol. , vol.13 , pp. 347-369
    • Van Lint, J.W.C.1    Hoogendoorn, S.P.2    Van Zuylen, H.J.3
  • 15
    • 0042074657 scopus 로고    scopus 로고
    • Wavelet-clustering-neural network model for freeway incident detection
    • S. Ghosh-Dastidar and H. Adeli, "Wavelet-clustering-neural network model for freeway incident detection, " Comput.-Aided Civil Infrastruct. Eng., vol. 18, no. 5, pp. 325-338, 2003.
    • (2003) Comput.-Aided Civil Infrastruct. Eng. , vol.18 , Issue.5 , pp. 325-338
    • Ghosh-Dastidar, S.1    Adeli, H.2
  • 16
    • 0036532655 scopus 로고    scopus 로고
    • Urban traffic flow prediction using a fuzzy-neural approach
    • H. Yin, S. C. Wong, J. Xu, and C. K. Wong, "Urban traffic flow prediction using a fuzzy-neural approach, " Transp. Res. C, Emerg. Technol., vol. 10, no. 2, pp. 85-98, 2002.
    • (2002) Transp. Res. C, Emerg. Technol. , vol.10 , Issue.2 , pp. 85-98
    • Yin, H.1    Wong, S.C.2    Xu, J.3    Wong, C.K.4
  • 17
    • 33746610646 scopus 로고    scopus 로고
    • POP-TRAFFIC: A novel fuzzy neural approach to road traffic analysis and prediction
    • Sep.
    • Q. Chai, M. Pasquier, and B. B. S. Lim, "POP-TRAFFIC: A novel fuzzy neural approach to road traffic analysis and prediction, " in Proc. IEEE Intell. Transp. Syst., Sep. 2006, pp. 133-146.
    • (2006) Proc. IEEE Intell. Transp. Syst. , pp. 133-146
    • Chai, Q.1    Pasquier, M.2    Lim, B.B.S.3
  • 18
    • 45849138568 scopus 로고    scopus 로고
    • Adaptive hybrid fuzzy rule-Based system approach for modeling and predicting urban traffic flow
    • Oct.
    • L. Dimitriou, T. Tsekeris, and A. Stathopoulos, "Adaptive hybrid fuzzy rule-Based system approach for modeling and predicting urban traffic flow, " Transp. Res. C, Emerg. Technol., vol. 16, pp. 554-573, Oct. 2008.
    • (2008) Transp. Res. C, Emerg. Technol. , vol.16 , pp. 554-573
    • Dimitriou, L.1    Tsekeris, T.2    Stathopoulos, A.3
  • 19
    • 72449145830 scopus 로고    scopus 로고
    • Short-term travel time predictions using support vector regression
    • paper 08-0670
    • S. H. Lam and T. D. Toan, "Short-term travel time predictions using support vector regression, " in Proc. Annu. Meeting Transp. Res. Board, 2008, paper 08-0670.
    • (2008) Proc. Annu. Meeting Transp. Res. Board
    • Lam, S.H.1    Toan, T.D.2
  • 20
    • 10644266188 scopus 로고    scopus 로고
    • Travel-time prediction with support vector regression
    • Jun.
    • C. H. Wu, J. M. Ho, and D. T. Lee, "Travel-time prediction with support vector regression, " IEEE Trans. Intell. Transp. Syst., vol. 125, no. 6, pp. 515-523, Jun. 2004.
    • (2004) IEEE Trans. Intell. Transp. Syst. , vol.125 , Issue.6 , pp. 515-523
    • Wu, C.H.1    Ho, J.M.2    Lee, D.T.3
  • 21
    • 77956397184 scopus 로고    scopus 로고
    • Traffic forecasting using least squares support vector machines
    • Y. Zhang and Y. Liu, "Traffic forecasting using least squares support vector machines, " Transportmetrica, vol. 5, no. 3, pp. 193-213, 2009.
    • (2009) Transportmetrica , vol.5 , Issue.3 , pp. 193-213
    • Zhang, Y.1    Liu, Y.2
  • 22
    • 40449104106 scopus 로고    scopus 로고
    • Forecasting of short-term freeway volume with v-support vector machines
    • Aug.
    • Y. Zhang and Y. Xie, "Forecasting of short-term freeway volume with v-support vector machines, " Transp. Res. Rec., vol. 2024, pp. 92-99, Aug. 2007.
    • (2007) Transp. Res. Rec. , vol.2024 , pp. 92-99
    • Zhang, Y.1    Xie, Y.2
  • 23
    • 84898816246 scopus 로고    scopus 로고
    • Spatiotemporal patterns in large-scale traffic speed prediction
    • Feb.
    • M. T. Asif et al., "Spatiotemporal patterns in large-scale traffic speed prediction, " IEEE Transp. Intell. Transp. Syst., vol. 15, no. 2, pp. 794-804, Feb. 2014.
    • (2014) IEEE Transp. Intell. Transp. Syst. , vol.15 , Issue.2 , pp. 794-804
    • Asif, M.T.1
  • 24
    • 84863475937 scopus 로고    scopus 로고
    • Dynamic analysis of Kalman filter for traffic flow forecasting in sensor nets
    • Oct.
    • Y. Zhao, Y. Liu, L. Shan, and B. Zhou, "Dynamic analysis of Kalman filter for traffic flow forecasting in sensor nets, " Inf. Technol. J., vol. 11, pp. 1508-1512, Oct. 2012.
    • (2012) Inf. Technol. J. , vol.11 , pp. 1508-1512
    • Zhao, Y.1    Liu, Y.2    Shan, L.3    Zhou, B.4
  • 25
    • 0035480351 scopus 로고    scopus 로고
    • Use of sequential learning for shortterm traffic flow forecasting
    • Sep.
    • H. Chen and S. Grant-Muller, "Use of sequential learning for shortterm traffic flow forecasting, " Transp. Res. C, Emerg. Technol., vol. 9, pp. 319-336, Sep. 2001.
    • (2001) Transp. Res. C, Emerg. Technol. , vol.9 , pp. 319-336
    • Chen, H.1    Grant-Muller, S.2
  • 26
    • 0345375534 scopus 로고    scopus 로고
    • Dynamic travel time prediction with real-time and historic data
    • S. I. J. Chien and C. M. Kuchipudi, "Dynamic travel time prediction with real-time and historic data, " J. Transp. Eng., vol. 129, no. 6, pp. 608-616, 2003.
    • (2003) J. Transp. Eng. , vol.129 , Issue.6 , pp. 608-616
    • Chien, S.I.J.1    Kuchipudi, C.M.2
  • 27
    • 1942440883 scopus 로고    scopus 로고
    • Predicting travel times for the South Jersey real-time motorist information system
    • Jan.
    • S. Chien, X. Liu, and K. Ozbay, "Predicting travel times for the South Jersey real-time motorist information system, " Transp. Res. Rec., vol. 1855, pp. 32-40, Jan. 2003.
    • (2003) Transp. Res. Rec. , vol.1855 , pp. 32-40
    • Chien, S.1    Liu, X.2    Ozbay, K.3
  • 28
    • 40349102104 scopus 로고    scopus 로고
    • Online learning solutions for freeway travel time prediction
    • Jan.
    • J. W. C. Van Lint, "Online learning solutions for freeway travel time prediction, " IEEE Transp. Intell. Transp. Syst., vol. 9, no. 1, pp. 38-47, Jan. 2008.
    • (2008) IEEE Transp. Intell. Transp. Syst. , vol.9 , Issue.1 , pp. 38-47
    • Van Lint, J.W.C.1
  • 29
    • 33748429561 scopus 로고    scopus 로고
    • RENAISSANCE-A unified macroscopic model-based approach to real-time freeway network traffic surveillance
    • Y. Wang, M. Papageorgiou, and A. Messmer, "RENAISSANCE-A unified macroscopic model-based approach to real-time freeway network traffic surveillance, " Transp. Res. C, Emerg. Technol., vol. 14, no. 3, pp. 190-212, 2006.
    • (2006) Transp. Res. C, Emerg. Technol. , vol.14 , Issue.3 , pp. 190-212
    • Wang, Y.1    Papageorgiou, M.2    Messmer, A.3
  • 30
    • 31044437283 scopus 로고    scopus 로고
    • Short-term freeway traffic flow prediction: Bayesian combined neural network approach
    • Sep.
    • W. Zheng, D.-H. Lee, and Q. Shi, "Short-term freeway traffic flow prediction: Bayesian combined neural network approach, " J. Transp. Eng., vol. 132, pp. 114-121, Sep. 2006.
    • (2006) J. Transp. Eng. , vol.132 , pp. 114-121
    • Zheng, W.1    Lee, D.-H.2    Shi, Q.3
  • 31
  • 32
    • 34249030515 scopus 로고    scopus 로고
    • Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition
    • Sep.
    • Y. Xie, Y. Zhang, and Z. Ye, "Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition, " Comput.-Aided Civil Infrastruct. Eng., vol. 22, pp. 326-334, Sep. 2007.
    • (2007) Comput.-Aided Civil Infrastruct. Eng. , vol.22 , pp. 326-334
    • Xie, Y.1    Zhang, Y.2    Ye, Z.3
  • 33
    • 84938598065 scopus 로고    scopus 로고
    • Hybrid prediction approach based on weekly similarities of traffic flow for different temporal scales
    • Oct.
    • J. Tang, H. Wang, Y. Wang, X. Liu, and F. Liu, "Hybrid prediction approach based on weekly similarities of traffic flow for different temporal scales, " Transp. Res. Rec., vol. 2443, pp. 21-31, Oct. 2014.
    • (2014) Transp. Res. Rec. , vol.2443 , pp. 21-31
    • Tang, J.1    Wang, H.2    Wang, Y.3    Liu, X.4    Liu, F.5
  • 34
    • 84928950246 scopus 로고    scopus 로고
    • Combining the statistical model and heuristic model to predict flow rate
    • C. Dong, S. H. Richards, Q. Yang, and C. Shao, "Combining the statistical model and heuristic model to predict flow rate, " J. Transp. Eng., vol. 140, no. 7, p. 04014023, 2014.
    • (2014) J. Transp. Eng. , vol.140 , Issue.7 , pp. 04014023
    • Dong, C.1    Richards, S.H.2    Yang, Q.3    Shao, C.4
  • 35
    • 0028406835 scopus 로고
    • Traffic-flow dynamics: A search for chaos
    • Sep.
    • D. S. Dendrinos, "Traffic-flow dynamics: A search for chaos, " Chaos, Solitons Fractals, vol. 4, pp. 605-617, Sep. 1994.
    • (1994) Chaos, Solitons Fractals , vol.4 , pp. 605-617
    • Dendrinos, D.S.1
  • 36
    • 0034774035 scopus 로고    scopus 로고
    • Spectral and cross-spectral analysis of urban traffic flows
    • Aug.
    • A. Stathopoulos and M. G. Karlaftis, "Spectral and cross-spectral analysis of urban traffic flows, " in Proc. IEEE Intell. Transp. Syst., Aug. 2001, pp. 820-825.
    • (2001) Proc. IEEE Intell. Transp. Syst. , pp. 820-825
    • Stathopoulos, A.1    Karlaftis, M.G.2
  • 37
    • 84902550168 scopus 로고    scopus 로고
    • A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model
    • Jun.
    • Y. Zhang, Y. Zhang, and A. Haghani, "A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model, " Transp. Res. C, Emerg. Technol., vol. 43, pp. 65-78, Jun. 2013.
    • (2013) Transp. Res. C, Emerg. Technol. , vol.43 , pp. 65-78
    • Zhang, Y.1    Zhang, Y.2    Haghani, A.3
  • 38
    • 84861914607 scopus 로고    scopus 로고
    • Real-time traffic flow forecasting using spectral analysis
    • Feb.
    • T. T. Tchrakian, B. Basu, and M. O'Mahony, "Real-time traffic flow forecasting using spectral analysis, " IEEE Transp. Intell. Transp. Syst., vol. 13, no. 2, pp. 519-526, Feb. 2012.
    • (2012) IEEE Transp. Intell. Transp. Syst. , vol.13 , Issue.2 , pp. 519-526
    • Tchrakian, T.T.1    Basu, B.2    O'Mahony, M.3
  • 39
    • 79951775181 scopus 로고    scopus 로고
    • Statistical methods versus neural networks in transportation research: Differences, similarities and some insights
    • Sep.
    • M. G. Karlaftis and E. I. Vlahogianni, "Statistical methods versus neural networks in transportation research: Differences, similarities and some insights, " Transp. Res. C, Emerg. Technol., vol. 19, pp. 387-399, Sep. 2011.
    • (2011) Transp. Res. C, Emerg. Technol. , vol.19 , pp. 387-399
    • Karlaftis, M.G.1    Vlahogianni, E.I.2
  • 40
    • 0001961635 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks-algorithms, applications and biological motivation
    • Singapore: World Scientific
    • K. Nikola, "Evolving fuzzy neural networks-algorithms, applications and biological motivation, " in Methodologies for the Conception, Design and Application of Soft Computing. Singapore: World Scientific, 1998, pp. 271-274.
    • (1998) Methodologies for the Conception, Design and Application of Soft Computing , pp. 271-274
    • Nikola, K.1
  • 41
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for supervised/ unsupervised online knowledge-based learning
    • Jun.
    • N. Kasabov, "Evolving fuzzy neural networks for supervised/ unsupervised online knowledge-based learning, " IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 31, no. 6, pp. 902-918, Jun. 2001.
    • (2001) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.1
  • 42
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • Feb.
    • N. K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction, " IEEE Fuzzy Syst., vol. 10, no. 2, pp. 144-154, Feb. 2002.
    • (2002) IEEE Fuzzy Syst. , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 46
    • 33748872845 scopus 로고    scopus 로고
    • Calibrated probabilistic forecasting at the stateline wind energy center: The regimeswitching space-time method
    • T. K. Gneiting, K. Larson, M. G. Westrick, and E. Aldrich, "Calibrated probabilistic forecasting at the stateline wind energy center: The regimeswitching space-time method, " J. Amer. Statist. Assoc., vol. 101, no. 475, pp. 968-979, 2006.
    • (2006) J. Amer. Statist. Assoc. , vol.101 , Issue.475 , pp. 968-979
    • Gneiting, T.K.1    Larson, K.2    Westrick, M.G.3    Aldrich, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.