메뉴 건너뛰기




Volumn 5, Issue 3, 2009, Pages 193-213

Traffic forecasting using least squares support vector machines

Author keywords

Least squares support vector machines (LS SVMs); State space; Traffic forecasting; Travel time index (TTI)

Indexed keywords

COMPUTATIONAL INTELLIGENCE TECHNIQUES; EFFECTIVE MANAGEMENT; GENERALISATION; GLOBAL MINIMA; INTELLIGENT TRANSPORTATION SYSTEMS; LEAST SQUARES SUPPORT VECTOR MACHINES; MEAN ABSOLUTE PERCENTAGE ERROR; NON-PARAMETRIC TECHNIQUES; PERCENTAGE ERROR; STABILITY AND ROBUSTNESS; STATE SPACE; STATE SPACE APPROACH; TRAFFIC DATA; TRAFFIC FORECASTING; TRAFFIC PARAMETERS; TRAVEL TIME; TRAVEL TIME INDEX (TTI); WEAK REGULARITY;

EID: 77956397184     PISSN: 18128602     EISSN: None     Source Type: Journal    
DOI: 10.1080/18128600902823216     Document Type: Article
Times cited : (130)

References (39)
  • 1
    • 38349046242 scopus 로고    scopus 로고
    • Forecasting travel for very large cities: Challenges and opportunities for China
    • Boyce, D. and Xiong, C., 2007. Forecasting travel for very large cities: challenges and opportunities for China. Transportmetrica, 3 (1), 1-19.
    • (2007) Transportmetrica , vol.3 , Issue.1 , pp. 1-19
    • Boyce, D.1    Xiong, C.2
  • 2
    • 0842333908 scopus 로고    scopus 로고
    • Different methods of traffic forecast based on real data
    • Chrobok, R., et al., 2004. Different methods of traffic forecast based on real data. European Journal of Operational Research, 155 (3), 558-568.
    • (2004) European Journal of Operational Research , vol.155 , Issue.3 , pp. 558-568
    • Chrobok, R.1
  • 3
    • 0037336276 scopus 로고    scopus 로고
    • Traffic prediction using multivariate nonparametric regression
    • Clark, S., 2003. Traffic prediction using multivariate nonparametric regression. ASCE Journal of Transportation Engineering, 129 (2), 161-168.
    • (2003) ASCE Journal of Transportation Engineering , vol.129 , Issue.2 , pp. 161-168
    • Clark, S.1
  • 6
    • 40649111398 scopus 로고    scopus 로고
    • Highway traffic forecasting by support vector regression model with tabu search algorithms
    • Vancouver, BC, Canada
    • Hong, W.C., et al., 2006. Highway traffic forecasting by support vector regression model with tabu search algorithms. Proceedings of the IEEE International Joint Conference on Neural Networks, Vancouver, BC, Canada, 1617-1621.
    • (2006) Proceedings of The IEEE International Joint Conference On Neural Networks , pp. 1617-1621
    • Hong, W.C.1
  • 7
    • 26444571471 scopus 로고    scopus 로고
    • Dynamic wavelet neural network model for traffic flow forecasting
    • Jiang, X.M. and Adeli, H., 2005. Dynamic wavelet neural network model for traffic flow forecasting. ASCE Journal of Transportation Engineering, 131 (10), 771-779.
    • (2005) ASCE Journal of Transportation Engineering , vol.131 , Issue.10 , pp. 771-779
    • Jiang, X.M.1    Adeli, H.2
  • 9
    • 33646433965 scopus 로고    scopus 로고
    • A travel time prediction algorithm scalable to freeway networks with many nodes with arbitrary travel routes
    • Kwon, J. and Petty, K., 2005. A travel time prediction algorithm scalable to freeway networks with many nodes with arbitrary travel routes. Transportation Research Record, The Journal of Transportation Research Board, 1935, 147-153.
    • (2005) Transportation Research Record, the Journal of Transportation Research Board , vol.1935 , pp. 147-153
    • Kwon, J.1    Petty, K.2
  • 10
    • 72449145830 scopus 로고    scopus 로고
    • Short-term travel time prediction using support vector regression
    • CD ROM, Washington, DC
    • Lam, S.H.M., and Toan, T.D., 2008. Short-term travel time prediction using support vector regression. Transportation Research Board 87th Annual Meeting, CD ROM, Washington, DC.
    • (2008) Transportation Research Board 87th Annual Meeting
    • Lam, S.H.M.1    Toan, T.D.2
  • 11
    • 0034205574 scopus 로고    scopus 로고
    • Estimation of AADT from short period counts in Hong Kong - a comparison between neural network method and regression analysis
    • Lam, W.H.K. and Xu, J., 2000. Estimation of AADT from short period counts in Hong Kong - a comparison between neural network method and regression analysis. Journal of Advanced Transportation, 34 (2), 249-268.
    • (2000) Journal of Advanced Transportation , vol.34 , Issue.2 , pp. 249-268
    • Lam, W.H.K.1    Xu, J.2
  • 12
    • 33645756818 scopus 로고    scopus 로고
    • Short-term hourly traffic forecasts using Hong Kong Annual Traffic Census
    • Lam, W.H.K., et al., 2006a. Short-term hourly traffic forecasts using Hong Kong Annual Traffic Census. Transportation, 33 (3), 291-310.
    • (2006) Transportation , vol.33 , Issue.3 , pp. 291-310
    • Lam, W.H.K.1
  • 13
    • 33646421626 scopus 로고    scopus 로고
    • Comparison of two non-parametric models for daily traffic forecasting in Hong Kong
    • Lam, W.H.K., Tang, Y.F., and Tam, M.L., 2006b. Comparison of two non-parametric models for daily traffic forecasting in Hong Kong. Journal of Forecasting, 25 (3), 173-192.
    • (2006) Journal of Forecasting , vol.25 , Issue.3 , pp. 173-192
    • Lam, W.H.K.1    Tang, Y.F.2    Tam, M.L.3
  • 14
    • 33747785349 scopus 로고    scopus 로고
    • Short-term travel speed prediction models in car navigation systems
    • Lee, S., Lee, Y.I., and Cho, B., 2006. Short-term travel speed prediction models in car navigation systems. Journal of Advanced Transportation, 40 (2), 123-139.
    • (2006) Journal of Advanced Transportation , vol.40 , Issue.2 , pp. 123-139
    • Lee, S.1    Lee, Y.I.2    Cho, B.3
  • 15
    • 46149126623 scopus 로고    scopus 로고
    • Predicting motor vehicle crashes using support vector machine models
    • Li, X., et al., 2008. Predicting motor vehicle crashes using support vector machine models. Accident Analysis & Prevention, 40 (4), 1611-1618.
    • (2008) Accident Analysis & Prevention , vol.40 , Issue.4 , pp. 1611-1618
    • Li, X.1
  • 16
    • 24944582429 scopus 로고    scopus 로고
    • Multi-scale combination prediction model with least square support vector machine for network traffic
    • Liu, Z.X., Zhang, D., and Liao, H., 2005. Multi-scale combination prediction model with least square support vector machine for network traffic. Lecture Notes in Computer Science, 3498, 385-390.
    • (2005) Lecture Notes In Computer Science , vol.3498 , pp. 385-390
    • Liu, Z.X.1    Zhang, D.2    Liao, H.3
  • 18
    • 56349122420 scopus 로고    scopus 로고
    • AADT prediction using support vector regression with data-dependent parameters
    • Manoel, C., et al., 2009a. AADT prediction using support vector regression with data-dependent parameters. Expert Systems with Applications, 36 (2), 2979-2986.
    • (2009) Expert Systems With Applications , vol.36 , Issue.2 , pp. 2979-2986
    • Manoel, C.1
  • 19
    • 58349104545 scopus 로고    scopus 로고
    • Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions
    • Manoel, C., et al., 2009b. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Systems with Applications, 36 (3), 6164-6173.
    • (2009) Expert Systems With Applications , vol.36 , Issue.3 , pp. 6164-6173
    • Manoel, C.1
  • 21
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: Comparison of modeling approaches
    • Smith, B.L. and Demetsky, M.J., 1997. Traffic flow forecasting: comparison of modeling approaches. ASCE Journal of Transportation Engineering, 123 (4), 261-266.
    • (1997) ASCE Journal of Transportation Engineering , vol.123 , Issue.4 , pp. 261-266
    • Smith, B.L.1    Demetsky, M.J.2
  • 23
    • 38149063830 scopus 로고    scopus 로고
    • Hybrid GA based online support vector machine model for short-term traffic flow forecasting
    • Su, H. and Yu, S., 2007. Hybrid GA based online support vector machine model for short-term traffic flow forecasting. Lecture Notes in Computer Science, 4847, 743-752.
    • (2007) Lecture Notes In Computer Science , vol.4847 , pp. 743-752
    • Su, H.1    Yu, S.2
  • 25
    • 0035181296 scopus 로고    scopus 로고
    • Optimal control by least squares support vector machines
    • Suykens, J.A.K., Vandewalle, J., and De Moor, B., 2001. Optimal control by least squares support vector machines. Neural Networks, 14 (1), 23-35.
    • (2001) Neural Networks , vol.14 , Issue.1 , pp. 23-35
    • Suykens, J.A.K.1    Vandewalle, J.2    de Moor, B.3
  • 27
    • 55849099624 scopus 로고    scopus 로고
    • Using automatic vehicle identification data for travel time estimation in Hong Kong
    • Tam, M.L. and Lam, W.H.K., 2008. Using automatic vehicle identification data for travel time estimation in Hong Kong. Transportmetrica, 4 (3), 179-194.
    • (2008) Transportmetrica , vol.4 , Issue.3 , pp. 179-194
    • Tam, M.L.1    Lam, W.H.K.2
  • 28
    • 0038630725 scopus 로고    scopus 로고
    • Comparison of four modeling techniques for short-term AADT forecasting in Hong Kong
    • Tang, Y.F., Lam, W.H.K., and Ng, P.L.P., 2003. Comparison of four modeling techniques for short-term AADT forecasting in Hong Kong. ASCE Journal of Transportation Engineering, 129 (3),271-277.
    • (2003) ASCE Journal of Transportation Engineering , vol.129 , Issue.3 , pp. 271-277
    • Tang, Y.F.1    Lam, W.H.K.2    Ng, P.L.P.3
  • 29
    • 33646691798 scopus 로고    scopus 로고
    • Enhancing short-term traffic forecasting with traffic condition information
    • Turochy, R.E., 2006. Enhancing short-term traffic forecasting with traffic condition information. ASCE Journal of Transportation Engineering, 132 (6), 469-474.
    • (2006) ASCE Journal of Transportation Engineering , vol.132 , Issue.6 , pp. 469-474
    • Turochy, R.E.1
  • 30
    • 0031093652 scopus 로고    scopus 로고
    • Recent advances and applications in the field of short-term traffic forecasting
    • Van Arem, B., et al., 1997. Recent advances and applications in the field of short-term traffic forecasting. International Journal of Forecasting, 13 (1), 1-12.
    • (1997) International Journal of Forecasting , vol.13 , Issue.1 , pp. 1-12
    • van Arem, B.1
  • 31
    • 4544262864 scopus 로고    scopus 로고
    • A comparison of the performance of artificial neural network and support vector machines for short term prediction of speed
    • Parma, Italy
    • Vanajakshi, L. and Rilett, L.R., 2004. A comparison of the performance of artificial neural network and support vector machines for short term prediction of speed. Proceedings of the IEEE Intelligent Vehicles Symposium, Parma, Italy, 194-199.
    • (2004) Proceedings of The IEEE Intelligent Vehicles Symposium , pp. 194-199
    • Vanajakshi, L.1    Rilett, L.R.2
  • 32
    • 47849099540 scopus 로고    scopus 로고
    • Support vector machine technique for the short term prediction of travel time
    • Istanbul, Turkey
    • Vanajakshi, L. and Rilett, L.R., 2007. Support vector machine technique for the short term prediction of travel time. Proceedings of the IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 600-605.
    • (2007) Proceedings of The IEEE Intelligent Vehicles Symposium , pp. 600-605
    • Vanajakshi, L.1    Rilett, L.R.2
  • 34
    • 4444369422 scopus 로고    scopus 로고
    • Short-term forecasting: Overview of objectives and methods
    • Vlahogianni, E.I., Golias, J.C., and Karlaftis, M.G., 2004. Short-term forecasting: overview of objectives and methods. Transport Reviews, 24 (5), 533-557.
    • (2004) Transport Reviews , vol.24 , Issue.5 , pp. 533-557
    • Vlahogianni, E.I.1    Golias, J.C.2    Karlaftis, M.G.3
  • 35
    • 85069304767 scopus 로고    scopus 로고
    • Statistical and econometric methods for transportation data analysis. Boca Raton
    • Chapman & Hall, CRC
    • Washington, S., Karlaftis, M., and Mannering, F., 2003. Statistical and econometric methods for transportation data analysis. Boca Raton, FL: Chapman & Hall, CRC.
    • (2003) FL
    • Washington, S.1    Karlaftis, M.2    Mannering, F.3
  • 37
    • 0036532655 scopus 로고    scopus 로고
    • Urban traffic flow prediction using a fuzzy-neural approach
    • Yin, H., et al., 2002. Urban traffic flow prediction using a fuzzy-neural approach. Transportation Research Part C: Emerging Technologies, 10 (2), 85-98.
    • (2002) Transportation Research Part C: Emerging Technologies , vol.10 , Issue.2 , pp. 85-98
    • Yin, H.1
  • 38
    • 0042664086 scopus 로고    scopus 로고
    • Short-term travel time prediction using a time-varying coefficient linear model
    • Zhang, X. and Rice, J., 2003. Short-term travel time prediction using a time-varying coefficient linear model. Transportation Research Part C: Emerging Technologies, 11 (3-4), 187-210.
    • (2003) Transportation Research Part C: Emerging Technologies , vol.11 , Issue.3-4 , pp. 187-210
    • Zhang, X.1    Rice, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.