메뉴 건너뛰기




Volumn 10, Issue 1, 2017, Pages

Differential correlation for sequencing data

Author keywords

[No Author keywords available]

Indexed keywords

MICRORNA; TRANSCRIPTOME;

EID: 85009781806     PISSN: None     EISSN: 17560500     Source Type: Journal    
DOI: 10.1186/s13104-016-2331-9     Document Type: Article
Times cited : (20)

References (42)
  • 1
    • 77953913791 scopus 로고    scopus 로고
    • From "differential expression" to "differential networking" - Identification of dysfunctional regulatory networks in diseases
    • 20570387
    • de la Fuente A. From "differential expression" to "differential networking" - identification of dysfunctional regulatory networks in diseases. Trends Genet. 2010;26:326-33.
    • (2010) Trends Genet , vol.26 , pp. 326-333
    • De La Fuente, A.1
  • 2
    • 1842536849 scopus 로고    scopus 로고
    • Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes
    • 1:CAS:528:DC%2BD2cXisVGksLg%3D 14743206
    • Willis A, Jung EJ, Wakefield T, Chen X. Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene. 2004;23:2330-8.
    • (2004) Oncogene , vol.23 , pp. 2330-2338
    • Willis, A.1    Jung, E.J.2    Wakefield, T.3    Chen, X.4
  • 3
    • 0029149718 scopus 로고
    • Differential correlation between interleukin patterns in disseminated and chronic human paracoccidioidomycosis
    • 1:CAS:528:DyaK2MXosVGisrc%3D 7648715 1553278
    • Silva CL, Silva MF, Faccioli LH, Pietro RCL, Cortez SAE, Foss NT. Differential correlation between interleukin patterns in disseminated and chronic human paracoccidioidomycosis. Clin Exp Immunol. 1995;101:314-20.
    • (1995) Clin Exp Immunol , vol.101 , pp. 314-320
    • Silva, C.L.1    Silva, M.F.2    Faccioli, L.H.3    Pietro, R.C.L.4    Cortez, S.A.E.5    Foss, N.T.6
  • 5
    • 84960088635 scopus 로고    scopus 로고
    • The discordant method: A novel approach for differential correlation
    • 1:CAS:528:DC%2BC28Xht1Cis7rL 26520855
    • Siska C, Bowler R, Kechris K. The discordant method: a novel approach for differential correlation. Bioinformatics. 2016;32(5):690-6.
    • (2016) Bioinformatics , vol.32 , Issue.5 , pp. 690-696
    • Siska, C.1    Bowler, R.2    Kechris, K.3
  • 6
    • 84862889045 scopus 로고    scopus 로고
    • An empirical Bayesian approach for identifying differential coexpression in high-throughput experiments
    • 1:CAS:528:DC%2BC38Xht1WksrzP 22004327
    • Dawson JA, Kendziorski C. An empirical bayesian approach for identifying differential coexpression in high-throughput experiments. Biometrics. 2012;68:455-65.
    • (2012) Biometrics , vol.68 , pp. 455-465
    • Dawson, J.A.1    Kendziorski, C.2
  • 7
    • 84875380606 scopus 로고    scopus 로고
    • DiffCorr: An R package to analyze and visualize differential correlations in biological networks
    • 1:CAS:528:DC%2BC38XhvVyru7zP 23246976
    • Fukushima A. DiffCorr: an R package to analyze and visualize differential correlations in biological networks. Gene. 2013;518:209-14.
    • (2013) Gene , vol.518 , pp. 209-214
    • Fukushima, A.1
  • 8
    • 79959390443 scopus 로고    scopus 로고
    • ROS-DET: Robust detector of switching mechanisms in gene expression
    • 1:CAS:528:DC%2BC3MXnvVKntrg%3D 21459849 3113587
    • Kayano M, Takigawa I, Shiga M, Tsuda K, Mamitsuka H. ROS-DET: robust detector of switching mechanisms in gene expression. Nucleic Acids Res. 2011;39:e74.
    • (2011) Nucleic Acids Res , vol.39 , pp. e74
    • Kayano, M.1    Takigawa, I.2    Shiga, M.3    Tsuda, K.4    Mamitsuka, H.5
  • 9
    • 84926507971 scopus 로고    scopus 로고
    • Limma powers differential expression analyses for RNA-sequencing and microarray studies
    • 25605792 4402510
    • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.
    • (2015) Nucleic Acids Res , vol.43 , pp. e47
    • Ritchie, M.E.1    Phipson, B.2    Wu, D.3    Hu, Y.4    Law, C.W.5    Shi, W.6    Smyth, G.K.7
  • 10
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • 1:CAS:528:DC%2BC3cXhsVahs7bI 20979621 3218662
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 11
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • 1:CAS:528:DC%2BD1MXhs1WlurvO 19910308
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139-40.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 13
    • 84913538927 scopus 로고    scopus 로고
    • A comparative study of statistical methods used to identify dependencies between gene expression signals
    • 23962479
    • de Siqueira Santos S, Takahashi DY, Nakata A, Fujita A. A comparative study of statistical methods used to identify dependencies between gene expression signals. Brief Bioinform. 2014;15:906-18.
    • (2014) Brief Bioinform. , vol.15 , pp. 906-918
    • De Siqueira Santos, S.1    Takahashi, D.Y.2    Nakata, A.3    Fujita, A.4
  • 14
    • 84870527707 scopus 로고    scopus 로고
    • Comparison of co-expression measures: Mutual information, correlation, and model based indices
    • 1:CAS:528:DC%2BC3sXjslyqtrs%3D
    • Song L, Langfelder P, Horvath S. Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinform. 2012;13:328.
    • (2012) BMC Bioinform , vol.13 , pp. 328
    • Song, L.1    Langfelder, P.2    Horvath, S.3
  • 15
    • 84865733148 scopus 로고    scopus 로고
    • Inferring correlation networks from genomic survey data
    • 1:CAS:528:DC%2BC38XhsVaktr3M 23028285 3447976
    • Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8:e1002687.
    • (2012) PLoS Comput Biol , vol.8 , pp. e1002687
    • Friedman, J.1    Alm, E.J.2
  • 16
    • 84864152519 scopus 로고    scopus 로고
    • R/EBcoexpress: An empirical Bayesian framework for discovering differential co-expression
    • 1:CAS:528:DC%2BC38XhtVSgsbrL 22595207 3492001
    • Dawson JA, Ye S, Kendziorski C. R/EBcoexpress: an empirical Bayesian framework for discovering differential co-expression. Bioinformatics. 2012;28:1939-40.
    • (2012) Bioinformatics , vol.28 , pp. 1939-1940
    • Dawson, J.A.1    Ye, S.2    Kendziorski, C.3
  • 17
    • 3543055716 scopus 로고    scopus 로고
    • Maternal and neonatal lymphocyte subpopulations at delivery and 3 days postpartum: Increased coexpression of CD45 isoforms
    • 15214936
    • Juretic E, Gagro A, Vukelic V, Petrovecki M. Maternal and neonatal lymphocyte subpopulations at delivery and 3 days postpartum: increased coexpression of CD45 isoforms. Am J Reprod Immunol. 2004;52:1-7.
    • (2004) Am J Reprod Immunol , vol.52 , pp. 1-7
    • Juretic, E.1    Gagro, A.2    Vukelic, V.3    Petrovecki, M.4
  • 18
    • 0033801577 scopus 로고    scopus 로고
    • Increased coexpression of eotaxin and interleukin 5 in bullous pemphigoid
    • 1:CAS:528:DC%2BD3MXjvFCrtbw%3D
    • Shrikhande T, Hunziker LR, Braa M. Increased coexpression of eotaxin and interleukin 5 in bullous pemphigoid. Acta Dermatovenereol Venereol. 2000;80:277-80.
    • (2000) Acta Dermatovenereol Venereol. , vol.80 , pp. 277-280
    • Shrikhande, T.1    Hunziker, L.R.2    Braa, M.3
  • 19
    • 79957665988 scopus 로고    scopus 로고
    • Microarrays, deep sequencing and the true measure of the transcriptome
    • 1:CAS:528:DC%2BC3MXntFWktbw%3D 21627854 3104486
    • Malone JH, Oliver B. Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol. 2011;9:34.
    • (2011) BMC Biol , vol.9 , pp. 34
    • Malone, J.H.1    Oliver, B.2
  • 20
    • 34447345702 scopus 로고    scopus 로고
    • A mixture model approach to the tests of concordance and discordance between two large-scale experiments with two-sample groups
    • 1:CAS:528:DC%2BD2sXntVOjtbk%3D 17384018
    • Lai Y, Adam B-L, Podolsky R, She J-X. A mixture model approach to the tests of concordance and discordance between two large-scale experiments with two-sample groups. Bioinformatics. 2007;23:1243-50.
    • (2007) Bioinformatics , vol.23 , pp. 1243-1250
    • Lai, Y.1    Adam, B.-L.2    Podolsky, R.3    She, J.-X.4
  • 21
    • 84945950292 scopus 로고    scopus 로고
    • Concordant integrative gene set enrichment analysis of multiple large-scale two-sample expression data sets
    • Lai Y, Zhang F, Nayak TK, Modarres R, Lee NH, McCaffrey TA. Concordant integrative gene set enrichment analysis of multiple large-scale two-sample expression data sets. BMC Genom. 2014;15:S6.
    • (2014) BMC Genom , vol.15 , pp. S6
    • Lai, Y.1    Zhang, F.2    Nayak, T.K.3    Modarres, R.4    Lee, N.H.5    McCaffrey, T.A.6
  • 23
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc. 1977;39:1-38.
    • (1977) J R Stat Soc , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 24
    • 84882714530 scopus 로고    scopus 로고
    • Data-based filtering for replicated high-throughput transcriptome sequencing experiments
    • 1:CAS:528:DC%2BC3sXht12hu7%2FJ 23821648 3740625
    • Rau A, Gallopin M, Celeux G, Jaffrezic F. Data-based filtering for replicated high-throughput transcriptome sequencing experiments. Bioinformatics. 2013;29:2146-52.
    • (2013) Bioinformatics , vol.29 , pp. 2146-2152
    • Rau, A.1    Gallopin, M.2    Celeux, G.3    Jaffrezic, F.4
  • 25
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • 20196867 2864565
    • Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.
    • (2010) Genome Biol , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 26
    • 84896735766 scopus 로고    scopus 로고
    • Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • 24485249 4053721
    • Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.
    • (2014) Genome Biol , vol.15 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 27
    • 84877053241 scopus 로고    scopus 로고
    • Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median
    • Leys C, Ley C, Klein O, Bernard P, Licata L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol. 2013;49:764-6.
    • (2013) J Exp Soc Psychol , vol.49 , pp. 764-766
    • Leys, C.1    Ley, C.2    Klein, O.3    Bernard, P.4    Licata, L.5
  • 28
    • 81355133271 scopus 로고    scopus 로고
    • The statistics of bulk segregant analysis using next generation sequencing
    • 1:CAS:528:DC%2BC3MXhsFSrtLvM 22072954 3207950
    • Magwene PM, Willis JH, Kelly JK. The statistics of bulk segregant analysis using next generation sequencing. PLoS Comput Biol. 2011;7:e1002255.
    • (2011) PLoS Comput Biol , vol.7 , pp. e1002255
    • Magwene, P.M.1    Willis, J.H.2    Kelly, J.K.3
  • 30
    • 84874726726 scopus 로고    scopus 로고
    • MiRCancer: A microRNA-cancer association database constructed by text mining on literature
    • 1:CAS:528:DC%2BC3sXjtlGgtrk%3D 23325619
    • Xie B, Ding Q, Han H, Wu D. miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics. 2013;29:638-44.
    • (2013) Bioinformatics , vol.29 , pp. 638-644
    • Xie, B.1    Ding, Q.2    Han, H.3    Wu, D.4
  • 32
    • 0001165055 scopus 로고
    • Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population
    • Fisher RA. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika. 1915;10:507-21.
    • (1915) Biometrika , vol.10 , pp. 507-521
    • Fisher, R.A.1
  • 34
    • 43349094507 scopus 로고    scopus 로고
    • The igraph software package for complex network research
    • Csardi G, Nepusz T. The igraph software package for complex network research. InterJ Complex Syst. 2006;1695:1-9. https://cran.rproject.org/web/packages/igraph/citation.html
    • (2006) InterJ Complex Syst , vol.1695 , pp. 1-9
    • Csardi, G.1    Nepusz, T.2
  • 35
    • 0242490780 scopus 로고    scopus 로고
    • Cytoscape: A software environment for integrated models of biomolecular interaction networks
    • 1:CAS:528:DC%2BD3sXovFWrtr4%3D 14597658 403769
    • Shannon P. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498-504.
    • (2003) Genome Res , vol.13 , pp. 2498-2504
    • Shannon, P.1
  • 36
    • 84875994305 scopus 로고    scopus 로고
    • Dissection of regulatory networks that are altered in disease via differential co-expression
    • 1:CAS:528:DC%2BC3sXlvValtrs%3D 23505361 3591264
    • Amar D, Safer H, Shamir R. Dissection of regulatory networks that are altered in disease via differential co-expression. PLoS Comput Biol. 2013;9:e1002955.
    • (2013) PLoS Comput Biol , vol.9 , pp. e1002955
    • Amar, D.1    Safer, H.2    Shamir, R.3
  • 37
    • 84863473586 scopus 로고    scopus 로고
    • When one and one gives more than two: Challenges and opportunities of integrative omics
    • 22303399 3262227
    • Choi H, Pavelka N. When one and one gives more than two: challenges and opportunities of integrative omics. Front Genet. 2012;2:105.
    • (2012) Front Genet , vol.2 , pp. 105
    • Choi, H.1    Pavelka, N.2
  • 38
    • 77950840239 scopus 로고    scopus 로고
    • Subspace differential coexpression analysis: Problem definition and a general approach
    • Fang G, Kuang R, Pandey G, Steinbach M, Myers CL, Kumar V. Subspace differential coexpression analysis: problem definition and a general approach. Pac Symp Biocomput. 2010;15:145-56.
    • (2010) Pac Symp Biocomput , vol.15 , pp. 145-156
    • Fang, G.1    Kuang, R.2    Pandey, G.3    Steinbach, M.4    Myers, C.L.5    Kumar, V.6
  • 39
    • 21044446187 scopus 로고    scopus 로고
    • Finding disease specific alterations in the co-expression of genes
    • 1:CAS:528:DC%2BD2cXlvF2gur0%3D 15262799
    • Kostka D, Spang R. Finding disease specific alterations in the co-expression of genes. Bioinformatics. 2004;20:i194-9.
    • (2004) Bioinformatics , vol.20 , pp. i194-i199
    • Kostka, D.1    Spang, R.2
  • 40
    • 84893275855 scopus 로고    scopus 로고
    • Gene sets net correlations analysis (GSNCA): A multivariate differential coexpression test for gene sets
    • 1:CAS:528:DC%2BC2cXhs1Cjtbk%3D 24292935
    • Rahmatallah Y, Emmert-Streib F, Glazko G. Gene sets net correlations analysis (GSNCA): a multivariate differential coexpression test for gene sets. Bioinformatics. 2014;30:360-8.
    • (2014) Bioinformatics , vol.30 , pp. 360-368
    • Rahmatallah, Y.1    Emmert-Streib, F.2    Glazko, G.3
  • 41
    • 77957319820 scopus 로고    scopus 로고
    • DiffCoEx: A simple and sensitive method to find differentially coexpressed gene modules
    • Tesson BM, Breitling R, Jansen RC. DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules. BMC Bioinform. 2010;11:497.
    • (2010) BMC Bioinform , vol.11 , pp. 497
    • Tesson, B.M.1    Breitling, R.2    Jansen, R.C.3
  • 42
    • 34547649056 scopus 로고    scopus 로고
    • CoXpress: Differential co-expression in gene expression data
    • Watson M. CoXpress: differential co-expression in gene expression data. BMC Bioinform. 2006;7(1):1.
    • (2006) BMC Bioinform. , vol.7 , Issue.1 , pp. 1
    • Watson, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.