메뉴 건너뛰기




Volumn 29, Issue 17, 2013, Pages 2146-2152

Data-based filtering for replicated high-throughput transcriptome sequencing experiments

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL; ARTICLE; GENE EXPRESSION PROFILING; HIGH THROUGHPUT SEQUENCING; HUMAN; METHODOLOGY; MOUSE; SEQUENCE ANALYSIS; PROCEDURES;

EID: 84882714530     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btt350     Document Type: Article
Times cited : (175)

References (28)
  • 1
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, 1-28.
    • (2010) Genome Biol. , vol.11 , pp. 1-28
    • Anders, S.1    Huber, W.2
  • 2
    • 79958115654 scopus 로고    scopus 로고
    • A two-stage Poisson model for testing RNA-seq data
    • Auer, P. L. and Doerge, R. W. (2011) A two-stage Poisson model for testing RNA-seq data. Stat. Appl. Genet. Mol. Biol., 10, 1-26.
    • (2011) Stat. Appl. Genet. Mol. Biol. , vol.10 , pp. 1-26
    • Auer, P.L.1    Doerge, R.W.2
  • 3
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y. andHochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B, 57, 289-300.
    • (1995) J. R. Stat. Soc. Ser. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Andhochberg, Y.2
  • 4
    • 2442706422 scopus 로고    scopus 로고
    • An overview of ensembl
    • Birney, E. et al. (2004) An overview of ensembl. Genome Res., 14, 925-928.
    • (2004) Genome Res. , vol.14 , pp. 925-928
    • Birney, E.1
  • 5
    • 79953034289 scopus 로고    scopus 로고
    • Evaluating gene expression in C57BL/GJ and DBA/2J mouse striatum using RNA-seq and microarrays
    • Bottomly, D. et al. (2011) Evaluating gene expression in C57BL/GJ and DBA/2J mouse striatum using RNA-seq and microarrays. PLoS One, 6, e17820.
    • (2011) PLoS One , vol.6
    • Bottomly, D.1
  • 6
    • 77953095629 scopus 로고    scopus 로고
    • Independent filtering increases detection power for highthroughput experiments
    • Bourgon, R. et al. (2010) Independent filtering increases detection power for highthroughput experiments. PNAS, 107, 9546-9551.
    • (2010) PNAS , vol.107 , pp. 9546-9551
    • Bourgon, R.1
  • 7
    • 78650970907 scopus 로고    scopus 로고
    • SNP discovery in the bovine milk transcriptome using RNA-seq technology
    • Cánovas, A. et al. (2010) SNP discovery in the bovine milk transcriptome using RNA-seq technology. Mamm. Genome, 21, 592-598.
    • (2010) Mamm. Genome , vol.21 , pp. 592-598
    • Cánovas, A.1
  • 8
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland, W. S. (1979) Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc., 74, 829-836.
    • (1979) J. Am. Stat. Assoc. , vol.74 , pp. 829-836
    • Cleveland, W.S.1
  • 9
    • 84875582401 scopus 로고    scopus 로고
    • A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
    • Epub ahead of print, September
    • Dillies, M. A. et al. (2012) A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinformatics, [Epub ahead of print, September 17, 2012]
    • (2012) Brief. Bioinformatics , vol.17 , pp. 2012
    • Dillies, M.A.1
  • 10
    • 81055124271 scopus 로고    scopus 로고
    • ReCount: A multi-experiment resource of analysis-ready RNA-seq gene count datasets
    • Frazee, A. C. et al. (2011) ReCount: a multi-experiment resource of analysis-ready RNA-seq gene count datasets. BMC Bioinformatics, 12, 449.
    • (2011) BMC Bioinformatics , vol.12 , pp. 449
    • Frazee, A.C.1
  • 11
    • 80052428676 scopus 로고    scopus 로고
    • Bioconductor: Open software development for comptuational biology and bioinformatics
    • Gentleman, R. C. et al. (2004) Bioconductor: open software development for comptuational biology and bioinformatics. Genome Biol., 5, 2004.
    • (2004) Genome Biol. , vol.5 , pp. 2004
    • Gentleman, R.C.1
  • 12
    • 84858068675 scopus 로고    scopus 로고
    • Removing technical variability in RNA-seq data using conditional quantile normalization
    • Hansen, K. D. et al. (2012) Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics, 13, 204-216.
    • (2012) Biostatistics , vol.13 , pp. 204-216
    • Hansen, K.D.1
  • 13
    • 0001368373 scopus 로고
    • É tude comparative de la distribution florale dans une portion des Alpes et des Jura
    • Jaccard, P. (1901) É tude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. Soc. Vaudoise Sci. Nat., 37, 547-549.
    • (1901) Bull. Soc. Vaudoise Sci. Nat. , vol.37 , pp. 547-549
    • Jaccard, P.1
  • 14
    • 9144269670 scopus 로고    scopus 로고
    • EnsMart: A generic system for fast and flexible access to biological data
    • Kasprzyk, D. et al. (2004) EnsMart: a generic system for fast and flexible access to biological data. Genome Res., 14, 160-169.
    • (2004) Genome Res. , vol.14 , pp. 160-169
    • Kasprzyk, D.1
  • 15
    • 79959473093 scopus 로고    scopus 로고
    • RNA-seq precision in quantitative expression profiling
    • Labaj, P. P. et al. (2011) RNA-seq precision in quantitative expression profiling. Bioinformatics, 27, i383-i381.
    • (2011) Bioinformatics , vol.27
    • Labaj, P.P.1
  • 16
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-Seq
    • Mortazavi, A. et al. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5, 621-628.
    • (2008) Nat. Methods , vol.5 , pp. 621-628
    • Mortazavi, A.1
  • 17
    • 78650539308 scopus 로고    scopus 로고
    • From RNA-seq reads to differential expression results
    • Oshlack, A. et al. (2010) From RNA-seq reads to differential expression results. Genome Biol., 11, 220.
    • (2010) Genome Biol. , vol.11 , pp. 220
    • Oshlack, A.1
  • 18
    • 65649126066 scopus 로고    scopus 로고
    • Transcript length bias in RNA-seq data confounds systems biology
    • Oshlack, A. and Wakefield, M. J. (2009) Transcript length bias in RNA-seq data confounds systems biology. Biol. Direct, 4, 14.
    • (2009) Biol. Direct , vol.4 , pp. 14
    • Oshlack, A.1    Wakefield, M.J.2
  • 19
    • 84907095419 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing
    • R Development Core Team. Vienna, Austria. 16 July 2013 date last accessed)
    • R Development Core Team. (2009) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http:// www. R-project. org (16 July 2013, date last accessed).
    • (2009) R Foundation for Statistical Computing
  • 20
    • 74549125753 scopus 로고    scopus 로고
    • An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data
    • Ramskö ld, D. et al. (2009) An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput. Biol., 5, e1000598.
    • (2009) PLoS Comput. Biol. , vol.5
    • Ramsköld, D.1
  • 21
    • 83455238345 scopus 로고    scopus 로고
    • GC-content normalization for RNA-seq data
    • Risso, D. et al. (2011) GC-content normalization for RNA-seq data. BMC Bioinformatics, 12, 480.
    • (2011) BMC Bioinformatics , vol.12 , pp. 480
    • Risso, D.1
  • 22
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A bioconductor package for differential expression analysis of digital gene expression data
    • Robinson, M. D. et al. (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1
  • 23
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson, M. D. and Oshlack, A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol., 11, R25.
    • (2010) Genome Biol. , vol.11
    • Robinson, M.D.1    Oshlack, A.2
  • 24
    • 79952301722 scopus 로고    scopus 로고
    • A comparison of single molecule and amplification based sequencing of cancer transcriptomes
    • Sam, L. T. et al. (2011) A comparison of single molecule and amplification based sequencing of cancer transcriptomes. PLoS One, 6, e17305.
    • (2011) PLoS One , vol.6
    • Sam, L.T.1
  • 25
    • 79956120349 scopus 로고    scopus 로고
    • Essential role of microphthalmia transcription factor for DNA eplication, mitosis and genomic stability in melanoma
    • Strub, T. et al. (2011) Essential role of microphthalmia transcription factor for DNA eplication, mitosis and genomic stability in melanoma. Oncogene, 30, 2319-2332.
    • (2011) Oncogene , vol.30 , pp. 2319-2332
    • Strub, T.1
  • 26
    • 47649124124 scopus 로고    scopus 로고
    • A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome
    • Sultan, M. et al. (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 15, 956-960.
    • (2008) Science , vol.15 , pp. 956-960
    • Sultan, M.1
  • 27
    • 75249095274 scopus 로고    scopus 로고
    • DEGseq: An R package for idenetifying differentially expressed genes from RNA-seq data
    • Wang, L. et al. (2010) DEGseq: an R package for idenetifying differentially expressed genes from RNA-seq data. Bioinformatics, 26, 136-138.
    • (2010) Bioinformatics , vol.26 , pp. 136-138
    • Wang, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.