-
1
-
-
33750458683
-
Powering the planet: chemical challenges in solar energy utilization
-
Lewis, N. S., and D. G. Nocera. 2006. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103:15729–15735.
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 15729-15735
-
-
Lewis, N.S.1
Nocera, D.G.2
-
3
-
-
84864272467
-
Graphene as a counter electrode material for dye-sensitized solar cells
-
Wang, H., and Y. H. Hu. 2012. Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ. Sci. 5:8182–8188.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 8182-8188
-
-
Wang, H.1
Hu, Y.H.2
-
4
-
-
84886851457
-
Unusual particle-size-induced promoter-to-poison transition of ZrN in counter electrodes for dye-sensitized solar cells
-
Wei, W., H. Wang, and Y. H. Hu. 2013. Unusual particle-size-induced promoter-to-poison transition of ZrN in counter electrodes for dye-sensitized solar cells. J. Mater. Chem. A 1:14350–14357.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 14350-14357
-
-
Wei, W.1
Wang, H.2
Hu, Y.H.3
-
5
-
-
84879982151
-
Efficient ZnO-based counter electrodes for dye-sensitized solar cells
-
Wang, H., W. Wei, and Y. H. Hu. 2013. Efficient ZnO-based counter electrodes for dye-sensitized solar cells. J. Mater. Chem. A 1:607–611.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 607-611
-
-
Wang, H.1
Wei, W.2
Hu, Y.H.3
-
6
-
-
35348856726
-
Solar energy conversion
-
Crabtree, G., and N. Lewis. 2007. Solar energy conversion. Phys. Today 60:37–42.
-
(2007)
Phys. Today
, vol.60
, pp. 37-42
-
-
Crabtree, G.1
Lewis, N.2
-
7
-
-
57649159482
-
Heterogeneous photocatalyst materials for water splitting
-
Kudo, A., and Y. Miseki. 2009. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38:253–278.
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 253-278
-
-
Kudo, A.1
Miseki, Y.2
-
8
-
-
78449289476
-
Solar water splitting cells
-
Walter, M. G., E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, et al. 2010. Solar water splitting cells. Chem. Rev. 110:6446–6473.
-
(2010)
Chem. Rev.
, vol.110
, pp. 6446-6473
-
-
Walter, M.G.1
Warren, E.L.2
McKone, J.R.3
Boettcher, S.W.4
Mi, Q.5
Santori, E.A.6
-
9
-
-
35348875044
-
Electrochemical photolysis of water at a semiconductor electrode
-
Fujishima, A., and K. Honda. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38.
-
(1972)
Nature
, vol.238
, pp. 37-38
-
-
Fujishima, A.1
Honda, K.2
-
10
-
-
0032540476
-
A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
-
Khaselev, O., and J. A. Turner. 1998. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280:425–427.
-
(1998)
Science
, vol.280
, pp. 425-427
-
-
Khaselev, O.1
Turner, J.A.2
-
12
-
-
0035249910
-
Photoelectrochemical properties of nanostructured tungsten trioxide films
-
Santato, C., M. Ulmann, and J. Augustynski. 2001. Photoelectrochemical properties of nanostructured tungsten trioxide films. J. Phys. Chem. B 105:936–940.
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 936-940
-
-
Santato, C.1
Ulmann, M.2
Augustynski, J.3
-
13
-
-
79957528668
-
Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution
-
Hou, Y., Abrams, B., Vesborg, P., Björketun, M., Herbst, K., Bech, L. 2011. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10:434–438.
-
(2011)
Nat. Mater.
, vol.10
, pp. 434-438
-
-
Hou, Y.1
Abrams, B.2
Vesborg, P.3
Björketun, M.4
Herbst, K.5
Bech, L.6
-
14
-
-
0001071096
-
Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder
-
Matsumura, M., Y. Saho, and H. Tsubomura. 1983. Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. J. Phys. Chem. 87:3807–3808.
-
(1983)
J. Phys. Chem.
, vol.87
, pp. 3807-3808
-
-
Matsumura, M.1
Saho, Y.2
Tsubomura, H.3
-
16
-
-
0242669302
-
3 photocatalysts with high crystallinity and surface nanostructure
-
3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125:3082–3089.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 3082-3089
-
-
Kato, H.1
Asakura, K.2
Kudo, A.3
-
17
-
-
84862094159
-
Photocatalytic water splitting using modified Gan: Zno solid solution under visible light: long-time operation and regeneration of activity
-
Ohno, T., L. Bai, T. Hisatomi, K. Maeda, and K. Domen. 2012. Photocatalytic water splitting using modified Gan: Zno solid solution under visible light: long-time operation and regeneration of activity. J. Am. Chem. Soc. 134:8254–8259.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 8254-8259
-
-
Ohno, T.1
Bai, L.2
Hisatomi, T.3
Maeda, K.4
Domen, K.5
-
18
-
-
84897681005
-
BiVO4-Ru/SrTiO3: Rh composite Z-Scheme photocatalyst for solar water splitting
-
Jia, Q., A. Iwase, and A. Kudo. 2014. BiVO4-Ru/SrTiO3: Rh composite Z-Scheme photocatalyst for solar water splitting. Chem. Sci. 5:1513–1519.
-
(2014)
Chem. Sci.
, vol.5
, pp. 1513-1519
-
-
Jia, Q.1
Iwase, A.2
Kudo, A.3
-
19
-
-
33646018910
-
2 solid solution photocatalysts with wide visible light absorption bands
-
2 solid solution photocatalysts with wide visible light absorption bands. Chem. Mater. 18:1969–1975.
-
(2006)
Chem. Mater.
, vol.18
, pp. 1969-1975
-
-
Tsuji, I.1
Kato, H.2
Kudo, A.3
-
20
-
-
84939825576
-
Highly efficient temperature-induced visible light photocatalytic hydrogen production from water
-
Han, B., and Y. H. Hu. 2015. Highly efficient temperature-induced visible light photocatalytic hydrogen production from water. J. Phys. Chem. C 119:18927–18934.
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 18927-18934
-
-
Han, B.1
Hu, Y.H.2
-
22
-
-
25844518227
-
-
U.S. Geological Survey, Reston, VA
-
U.S. Geological Survey. 2011. Mineral commodity summaries. U.S. Geological Survey, Reston, VA.
-
(2011)
Mineral commodity summaries
-
-
-
23
-
-
84873404226
-
Ni–Mo nanopowders for efficient electrochemical hydrogen evolution
-
McKone, J. R., B. F. Sadtler, C. A. Werlang, N. S. Lewis, and H. B. Gray. 2012. Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 3:166–169.
-
(2012)
ACS Catal.
, vol.3
, pp. 166-169
-
-
McKone, J.R.1
Sadtler, B.F.2
Werlang, C.A.3
Lewis, N.S.4
Gray, H.B.5
-
24
-
-
80053312320
-
Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts
-
Merki, D., and X. Hu. 2011. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 4:3878–3888.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3878-3888
-
-
Merki, D.1
Hu, X.2
-
25
-
-
84856690904
-
Molybdenum sulfides-efficient and viable materials for electro – and photoelectrocatalytic hydrogen evolution
-
Laursen, A. B., S. Kegnaes, S. Dahl, and I. Chorkendorff. 2012. Molybdenum sulfides-efficient and viable materials for electro – and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5:5577–5591.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 5577-5591
-
-
Laursen, A.B.1
Kegnaes, S.2
Dahl, S.3
Chorkendorff, I.4
-
26
-
-
84875413255
-
The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
-
Chhowalla, M., H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang. 2013. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5:263–275.
-
(2013)
Nat. Chem.
, vol.5
, pp. 263-275
-
-
Chhowalla, M.1
Shin, H.S.2
Eda, G.3
Li, L.-J.4
Loh, K.P.5
Zhang, H.6
-
27
-
-
84910070418
-
Catalyzing the hydrogen evolution reaction (Her) with molybdenum sulfide nanomaterials
-
Benck, J. D., T. R. Hellstern, J. Kibsgaard, P. Chakthranont, and T. F. Jaramillo. 2014. Catalyzing the hydrogen evolution reaction (Her) with molybdenum sulfide nanomaterials. ACS Catal. 4:3957–3971.
-
(2014)
ACS Catal.
, vol.4
, pp. 3957-3971
-
-
Benck, J.D.1
Hellstern, T.R.2
Kibsgaard, J.3
Chakthranont, P.4
Jaramillo, T.F.5
-
28
-
-
84906224151
-
Amorphous molybdenum sulfides as hydrogen evolution catalysts
-
Morales-Guio, C. G., and X. Hu. 2014. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 47:2671–2681.
-
(2014)
Acc. Chem. Res.
, vol.47
, pp. 2671-2681
-
-
Morales-Guio, C.G.1
Hu, X.2
-
29
-
-
84901665086
-
Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution
-
Morales-Guio, C. G., L.-A. Stern, and X. Hu. 2014. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43:6555–6569.
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 6555-6569
-
-
Morales-Guio, C.G.1
Stern, L.-A.2
Hu, X.3
-
30
-
-
84902163333
-
Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction
-
Yan, Y., B. Xia, Z. Xu, and X. Wang. 2014. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal. 4:1693–1705.
-
(2014)
ACS Catal.
, vol.4
, pp. 1693-1705
-
-
Yan, Y.1
Xia, B.2
Xu, Z.3
Wang, X.4
-
31
-
-
84934916291
-
Noble metal-free hydrogen evolution catalysts for water splitting
-
Zou, X., and Y. Zhang. 2015. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44:5148–5180.
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 5148-5180
-
-
Zou, X.1
Zhang, Y.2
-
32
-
-
84952665890
-
Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors
-
Li, S.-L., K. Tsukagoshi, E. Orgiu, and P. Samori. 2016. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 45:118–151.
-
(2016)
Chem. Soc. Rev.
, vol.45
, pp. 118-151
-
-
Li, S.-L.1
Tsukagoshi, K.2
Orgiu, E.3
Samori, P.4
-
33
-
-
84963553271
-
Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
-
Mak, K. F., and J. Shan. 2016. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10:216–226.
-
(2016)
Nat. Photonics
, vol.10
, pp. 216-226
-
-
Mak, K.F.1
Shan, J.2
-
34
-
-
0000574610
-
The crystal structure of molybdenite
-
Dickinson, R. G., and L. Pauling. 1923. The crystal structure of molybdenite. J. Am. Chem. Soc. 45:1466–1471.
-
(1923)
J. Am. Chem. Soc.
, vol.45
, pp. 1466-1471
-
-
Dickinson, R.G.1
Pauling, L.2
-
35
-
-
36849096704
-
2 several molecular layers thick
-
2 several molecular layers thick. J. Appl. Phys. 37:1928–1929.
-
(1966)
J. Appl. Phys.
, vol.37
, pp. 1928-1929
-
-
Frindt, R.F.1
-
37
-
-
0001738649
-
Ultrasharp interfaces grown with van der Waals epitaxy
-
Koma, A., and K. Yoshimura. 1986. Ultrasharp interfaces grown with van der Waals epitaxy. Surf. Sci. 174:556–560.
-
(1986)
Surf. Sci.
, vol.174
, pp. 556-560
-
-
Koma, A.1
Yoshimura, K.2
-
41
-
-
84860361457
-
2 transition-metal oxides and dichalcogenides in a honeycomb-like structure
-
2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116:8983–8999.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 8983-8999
-
-
Ataca, C.1
S¸ahin, H.2
Ciraci, S.3
-
42
-
-
0001486580
-
Transmission spectra of some transition metal dichalcogenides. II. Group via: trigonal prismatic coordination
-
Beal, A. R., J. C. Knights, and W. Y. Liang. 1972. Transmission spectra of some transition metal dichalcogenides. II. Group via: trigonal prismatic coordination. J. Phys. C: Solid State Phys. 5:3540.
-
(1972)
J. Phys. C: Solid State Phys.
, vol.5
, pp. 3540
-
-
Beal, A.R.1
Knights, J.C.2
Liang, W.Y.3
-
46
-
-
84978772054
-
2 from stable 2H to metastable 1T and its memristive behavior
-
2 from stable 2H to metastable 1T and its memristive behavior. RSC Adv. 6:65691–65697.
-
(2016)
RSC Adv.
, vol.6
, pp. 65691-65697
-
-
Cheng, P.1
Sun, K.2
Hu, Y.H.3
-
47
-
-
84937148964
-
Low-dimensional transition-metal dichalcogenides
-
in, M. Springborg, J. Joswig, ed., The Royal Society of Chemistry, London, UK
-
Kuc, A. 2015. Low-dimensional transition-metal dichalcogenides. Pp. 1–29 in M. Springborg, and J. Joswig, ed. Chemical modelling: volume 11. The Royal Society of Chemistry, London, UK.
-
(2015)
Chemical modelling: volume 11
, pp. 1-29
-
-
Kuc, A.1
-
57
-
-
0034246232
-
Catalytic photooxidation of pentachlorophenol using semiconductor nanoclusters
-
Wilcoxon, J. P. 2000. Catalytic photooxidation of pentachlorophenol using semiconductor nanoclusters. J. Phys. Chem. B 104:7334–7343.
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 7334-7343
-
-
Wilcoxon, J.P.1
-
59
-
-
23044442056
-
Two-dimensional atomic crystals
-
Novoselov, K. S., D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, et al. 2005. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102:10451–10453.
-
(2005)
Proc. Natl Acad. Sci. USA
, vol.102
, pp. 10451-10453
-
-
Novoselov, K.S.1
Jiang, D.2
Schedin, F.3
Booth, T.J.4
Khotkevich, V.V.5
Morozov, S.V.6
-
60
-
-
84855440960
-
2 film-based field-effect transistors for sensing no at room temperature
-
2 film-based field-effect transistors for sensing no at room temperature. Small 8:63–67.
-
(2012)
Small
, vol.8
, pp. 63-67
-
-
Li, H.1
Yin, Z.2
He, Q.3
Li, H.4
Huang, X.5
Lu, G.6
-
61
-
-
79551634368
-
Two-dimensional nanosheets produced by liquid exfoliation of layered materials
-
Coleman, J. N., et al. 2011. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571.
-
(2011)
Science
, vol.331
, pp. 568-571
-
-
Coleman, J.N.1
-
62
-
-
80855144823
-
A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues
-
Zhou, K.-G., N.-N. Mao, H.-X. Wang, Y. Peng, and H.-L. Zhang. 2011. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 50:10839–10842.
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, pp. 10839-10842
-
-
Zhou, K.-G.1
Mao, N.-N.2
Wang, H.-X.3
Peng, Y.4
Zhang, H.-L.5
-
64
-
-
84873688493
-
Metal dichalcogenide nanosheets: preparation, properties and applications
-
Huang, X., Z. Zeng, and H. Zhang. 2013. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42:1934–1946.
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 1934-1946
-
-
Huang, X.1
Zeng, Z.2
Zhang, H.3
-
74
-
-
84879511122
-
Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction
-
Popczun, E. J., J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, et al. 2013. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135:9267–9270.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 9267-9270
-
-
Popczun, E.J.1
McKone, J.R.2
Read, C.G.3
Biacchi, A.J.4
Wiltrout, A.M.5
Lewis, N.S.6
-
75
-
-
84900868846
-
Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles
-
Popczun, E. J., C. G. Read, C. W. Roske, N. S. Lewis, and R. E. Schaak. 2014. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 53:5427–5430.
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 5427-5430
-
-
Popczun, E.J.1
Read, C.G.2
Roske, C.W.3
Lewis, N.S.4
Schaak, R.E.5
-
78
-
-
84892890332
-
2-Cds-[Gamma]-Taon hollow composites for enhanced visible-light-driven hydrogen evolution
-
2-Cds-[Gamma]-Taon hollow composites for enhanced visible-light-driven hydrogen evolution. Chem. Commun. 50:1731–1734.
-
(2014)
Chem. Commun.
, vol.50
, pp. 1731-1734
-
-
Wang, Z.1
Hou, J.2
Yang, C.3
Jiao, S.4
Zhu, H.5
-
79
-
-
84905972330
-
Construction of two-dimensional MoS2/Cds P-N nanohybrids for highly efficient photocatalytic hydrogen evolution
-
Zhang, J., Z. Zhu, and X. Feng. 2014. Construction of two-dimensional MoS2/Cds P-N nanohybrids for highly efficient photocatalytic hydrogen evolution. Chemistry 20:10632–10635.
-
(2014)
Chemistry
, vol.20
, pp. 10632-10635
-
-
Zhang, J.1
Zhu, Z.2
Feng, X.3
-
80
-
-
84906861620
-
2 onto a composite of reduced graphene oxide and Cds for synergic photocatalytic hydrogen generation
-
2 onto a composite of reduced graphene oxide and Cds for synergic photocatalytic hydrogen generation. J. Phys. Chem. C 118:19842–19848.
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 19842-19848
-
-
Li, Y.1
Wang, H.2
Peng, S.3
-
81
-
-
84907483820
-
2/Cds composite photocatalyst used for hydrogen production from water splitting under visible light
-
2/Cds composite photocatalyst used for hydrogen production from water splitting under visible light. Chem. Eng. J. 260:642–648.
-
(2015)
Chem. Eng. J.
, vol.260
, pp. 642-648
-
-
Xu, J.1
Cao, X.2
-
82
-
-
84870848998
-
2 cocatalyst confined on graphene sheets-the role of graphene
-
2 cocatalyst confined on graphene sheets-the role of graphene. J. Phys. Chem. C 116:25415–25424.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 25415-25424
-
-
Min, S.1
Lu, G.2
-
83
-
-
84880386732
-
Solar hydrogen generation by nanoscale p–n junction of P-type molybdenum disulfide/N-type nitrogen-doped reduced graphene oxide
-
Meng, F., J. Li, S. K. Cushing, M. Zhi, and N. Wu. 2013. Solar hydrogen generation by nanoscale p–n junction of P-type molybdenum disulfide/N-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 135:10286–10289.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 10286-10289
-
-
Meng, F.1
Li, J.2
Cushing, S.K.3
Zhi, M.4
Wu, N.5
-
87
-
-
84871971428
-
The influence of carbon content on the structure and properties of mosxcy photocatalysts for light-driven hydrogen generation
-
Djamil, J., S. A. Segler, A. Dabrowski, W. Bensch, A. Lotnyk, U. Schurmann, et al. 2013. The influence of carbon content on the structure and properties of mosxcy photocatalysts for light-driven hydrogen generation. Dalton Trans. 42:1287–1292.
-
(2013)
Dalton Trans.
, vol.42
, pp. 1287-1292
-
-
Djamil, J.1
Segler, S.A.2
Dabrowski, A.3
Bensch, W.4
Lotnyk, A.5
Schurmann, U.6
-
88
-
-
77953519949
-
2: a quantum size-confined photocatalyst for hydrogen evolution from water under visible light
-
2: a quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J. Phys. Chem. C 114:10628–10633.
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 10628-10633
-
-
Frame, F.A.1
Osterloh, F.E.2
-
89
-
-
0000975546
-
Molybdenum disulfide as a hydrogen evolution catalyst for water photodecomposition on semiconductors
-
Sobczynski, A. 1991. Molybdenum disulfide as a hydrogen evolution catalyst for water photodecomposition on semiconductors. J. Catal. 131:156–166.
-
(1991)
J. Catal.
, vol.131
, pp. 156-166
-
-
Sobczynski, A.1
-
95
-
-
84875294732
-
Layered nanojunctions for hydrogen-evolution catalysis
-
Hou, Y., A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, et al. 2013. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem. Int. Ed. 52:3621–3625.
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 3621-3625
-
-
Hou, Y.1
Laursen, A.B.2
Zhang, J.3
Zhang, G.4
Zhu, Y.5
Wang, X.6
-
96
-
-
84883022082
-
2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal Znin2s4 under visible light irradiations
-
2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal Znin2s4 under visible light irradiations. Appl. Catal. B 144:521–527.
-
(2014)
Appl. Catal. B
, vol.144
, pp. 521-527
-
-
Wei, L.1
Chen, Y.2
Lin, Y.3
Wu, H.4
Yuan, R.5
Li, Z.6
-
100
-
-
84907993654
-
Enhanced photocatalytic hydrogen evolution from water by niobate single molecular sheets and ensembles
-
Nakagawa, K., T. Jia, W. Zheng, S. M. Fairclough, M. Katoh, S. Sugiyama, et al. 2014. Enhanced photocatalytic hydrogen evolution from water by niobate single molecular sheets and ensembles. Chem. Commun. 50:13702–13705.
-
(2014)
Chem. Commun.
, vol.50
, pp. 13702-13705
-
-
Nakagawa, K.1
Jia, T.2
Zheng, W.3
Fairclough, S.M.4
Katoh, M.5
Sugiyama, S.6
-
101
-
-
84904742339
-
Optical properties of metal–molybdenum disulfide hybrid nanosheets and their application for enhanced photocatalytic hydrogen evolution
-
Yang, L., et al. 2014. Optical properties of metal–molybdenum disulfide hybrid nanosheets and their application for enhanced photocatalytic hydrogen evolution. ACS Nano 8:6979–6985.
-
(2014)
ACS Nano
, vol.8
, pp. 6979-6985
-
-
Yang, L.1
-
109
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al. 2004. Electric field effect in atomically thin carbon films. Science 306:666–669.
-
(2004)
Science
, vol.306
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
-
110
-
-
77956449509
-
Thinnest two-dimensional nanomaterial—graphene for solar energy
-
Hu, Y. H., H. Wang, and B. Hu. 2010. Thinnest two-dimensional nanomaterial—graphene for solar energy. ChemSusChem 3:782.
-
(2010)
ChemSusChem
, vol.3
, pp. 782
-
-
Hu, Y.H.1
Wang, H.2
Hu, B.3
-
111
-
-
80054954337
-
Graphene-based semiconductor photocatalysts
-
Xiang, Q., J. Yu, and M. Jaroniec. 2012. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41:782–796.
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 782-796
-
-
Xiang, Q.1
Yu, J.2
Jaroniec, M.3
-
112
-
-
84921306509
-
2 composites for highly enhanced photocatalytic properties
-
2 composites for highly enhanced photocatalytic properties. Chem. Commun. 51:1709–1712.
-
(2015)
Chem. Commun.
, vol.51
, pp. 1709-1712
-
-
Gao, W.1
Wang, M.2
Ran, C.3
Li, L.4
-
114
-
-
57849130247
-
A metal-free polymeric photocatalyst for hydrogen production from water under visible light
-
Wang, X., K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, et al. 2009. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8:76–80.
-
(2009)
Nat. Mater.
, vol.8
, pp. 76-80
-
-
Wang, X.1
Maeda, K.2
Thomas, A.3
Takanabe, K.4
Xin, G.5
Carlsson, J.M.6
-
115
-
-
73349105606
-
Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization
-
Zhang, J., X. Chen, K. Takanabe, K. Maeda, K. Domen, J. D. Epping, et al. 2010. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. Int. Ed. 49:441–444.
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 441-444
-
-
Zhang, J.1
Chen, X.2
Takanabe, K.3
Maeda, K.4
Domen, K.5
Epping, J.D.6
-
116
-
-
79961055826
-
Ordered organic-organic multilayer growth
-
Lunt, R. R., K. Sun, M. Kröger, J. B. Benziger, and S. R. Forrest. 2011. Ordered organic-organic multilayer growth. Phys. Rev. B 83:064114.
-
(2011)
Phys. Rev. B
, vol.83
, pp. 064114
-
-
Lunt, R.R.1
Sun, K.2
Kröger, M.3
Benziger, J.B.4
Forrest, S.R.5
-
117
-
-
80053330273
-
Controlled Van Der Waals heteroepitaxy of Inas nanowires on carbon honeycomb lattices
-
Hong, Y. J., and T. Fukui. 2011. Controlled Van Der Waals heteroepitaxy of Inas nanowires on carbon honeycomb lattices. ACS Nano 5:7576–7584.
-
(2011)
ACS Nano
, vol.5
, pp. 7576-7584
-
-
Hong, Y.J.1
Fukui, T.2
-
119
-
-
84903387057
-
Non-covalent doping of graphitic carbon nitride with ultrathin graphene oxide and molybdenum disulfide nanosheets: an effective binary heterojunction photocatalyst under visible light irradiation
-
Hu, S. W., L. W. Yang, Y. Tian, X. L. Wei, J. W. Ding, J. X. Zhong, et al. 2014. Non-covalent doping of graphitic carbon nitride with ultrathin graphene oxide and molybdenum disulfide nanosheets: an effective binary heterojunction photocatalyst under visible light irradiation. J. Colloid Interface Sci. 431:42–49.
-
(2014)
J. Colloid Interface Sci.
, vol.431
, pp. 42-49
-
-
Hu, S.W.1
Yang, L.W.2
Tian, Y.3
Wei, X.L.4
Ding, J.W.5
Zhong, J.X.6
-
121
-
-
0035891138
-
Photoelectrochemical cells
-
Gratzel, M. 2001. Photoelectrochemical cells. Nature 414:338–344.
-
(2001)
Nature
, vol.414
, pp. 338-344
-
-
Gratzel, M.1
-
122
-
-
84929346670
-
2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions
-
2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions. Green Chem. 17:2764–2768.
-
(2015)
Green Chem.
, vol.17
, pp. 2764-2768
-
-
Meng, C.1
Liu, Z.2
Zhang, T.3
Zhai, J.4
-
123
-
-
80755189427
-
2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer
-
2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 11:4774–4779.
-
(2011)
Nano Lett.
, vol.11
, pp. 4774-4779
-
-
Zhang, J.1
Yu, J.2
Zhang, Y.3
Li, Q.4
Gong, J.R.5
-
124
-
-
84870406684
-
Graphene transforms wide band Gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer
-
Zhang, Y., N. Zhang, Z.-R. Tang, and Y.-J. Xu. 2012. Graphene transforms wide band Gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 6:9777–9789.
-
(2012)
ACS Nano
, vol.6
, pp. 9777-9789
-
-
Zhang, Y.1
Zhang, N.2
Tang, Z.-R.3
Xu, Y.-J.4
-
125
-
-
0041075858
-
Photochemical production of hydrogen with zinc sulfide suspensions
-
Reber, J. F., and K. Meier. 1984. Photochemical production of hydrogen with zinc sulfide suspensions. J. Phys. Chem. 88:5903–5913.
-
(1984)
J. Phys. Chem.
, vol.88
, pp. 5903-5913
-
-
Reber, J.F.1
Meier, K.2
-
126
-
-
84880610608
-
Metal sulphide semiconductors for photocatalytic hydrogen production
-
Zhang, K., and L. Guo. 2013. Metal sulphide semiconductors for photocatalytic hydrogen production. Catal. Sci. Technol. 3:1672–1690.
-
(2013)
Catal. Sci. Technol.
, vol.3
, pp. 1672-1690
-
-
Zhang, K.1
Guo, L.2
|