메뉴 건너뛰기




Volumn 4, Issue 5, 2016, Pages 285-304

MoS2 as a co-catalyst for photocatalytic hydrogen production from water

Author keywords

Molybdenum disulfide; photocatalysis; semiconductor; solar energy; water splitting

Indexed keywords

CADMIUM SULFIDE; CARBON; CATALYSTS; LAYERED SEMICONDUCTORS; MOLYBDENUM COMPOUNDS; PHOTOCATALYSIS; SEMICONDUCTOR MATERIALS; SOLAR ENERGY; SOLAR POWER GENERATION; TRANSITION METALS;

EID: 85008421637     PISSN: None     EISSN: 20500505     Source Type: Journal    
DOI: 10.1002/ese3.128     Document Type: Review
Times cited : (231)

References (129)
  • 1
    • 33750458683 scopus 로고    scopus 로고
    • Powering the planet: chemical challenges in solar energy utilization
    • Lewis, N. S., and D. G. Nocera. 2006. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103:15729–15735.
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 15729-15735
    • Lewis, N.S.1    Nocera, D.G.2
  • 3
    • 84864272467 scopus 로고    scopus 로고
    • Graphene as a counter electrode material for dye-sensitized solar cells
    • Wang, H., and Y. H. Hu. 2012. Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ. Sci. 5:8182–8188.
    • (2012) Energy Environ. Sci. , vol.5 , pp. 8182-8188
    • Wang, H.1    Hu, Y.H.2
  • 4
    • 84886851457 scopus 로고    scopus 로고
    • Unusual particle-size-induced promoter-to-poison transition of ZrN in counter electrodes for dye-sensitized solar cells
    • Wei, W., H. Wang, and Y. H. Hu. 2013. Unusual particle-size-induced promoter-to-poison transition of ZrN in counter electrodes for dye-sensitized solar cells. J. Mater. Chem. A 1:14350–14357.
    • (2013) J. Mater. Chem. A , vol.1 , pp. 14350-14357
    • Wei, W.1    Wang, H.2    Hu, Y.H.3
  • 5
    • 84879982151 scopus 로고    scopus 로고
    • Efficient ZnO-based counter electrodes for dye-sensitized solar cells
    • Wang, H., W. Wei, and Y. H. Hu. 2013. Efficient ZnO-based counter electrodes for dye-sensitized solar cells. J. Mater. Chem. A 1:607–611.
    • (2013) J. Mater. Chem. A , vol.1 , pp. 607-611
    • Wang, H.1    Wei, W.2    Hu, Y.H.3
  • 6
    • 35348856726 scopus 로고    scopus 로고
    • Solar energy conversion
    • Crabtree, G., and N. Lewis. 2007. Solar energy conversion. Phys. Today 60:37–42.
    • (2007) Phys. Today , vol.60 , pp. 37-42
    • Crabtree, G.1    Lewis, N.2
  • 7
    • 57649159482 scopus 로고    scopus 로고
    • Heterogeneous photocatalyst materials for water splitting
    • Kudo, A., and Y. Miseki. 2009. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38:253–278.
    • (2009) Chem. Soc. Rev. , vol.38 , pp. 253-278
    • Kudo, A.1    Miseki, Y.2
  • 9
    • 35348875044 scopus 로고
    • Electrochemical photolysis of water at a semiconductor electrode
    • Fujishima, A., and K. Honda. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38.
    • (1972) Nature , vol.238 , pp. 37-38
    • Fujishima, A.1    Honda, K.2
  • 10
    • 0032540476 scopus 로고    scopus 로고
    • A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
    • Khaselev, O., and J. A. Turner. 1998. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280:425–427.
    • (1998) Science , vol.280 , pp. 425-427
    • Khaselev, O.1    Turner, J.A.2
  • 12
    • 0035249910 scopus 로고    scopus 로고
    • Photoelectrochemical properties of nanostructured tungsten trioxide films
    • Santato, C., M. Ulmann, and J. Augustynski. 2001. Photoelectrochemical properties of nanostructured tungsten trioxide films. J. Phys. Chem. B 105:936–940.
    • (2001) J. Phys. Chem. B , vol.105 , pp. 936-940
    • Santato, C.1    Ulmann, M.2    Augustynski, J.3
  • 13
    • 79957528668 scopus 로고    scopus 로고
    • Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution
    • Hou, Y., Abrams, B., Vesborg, P., Björketun, M., Herbst, K., Bech, L. 2011. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10:434–438.
    • (2011) Nat. Mater. , vol.10 , pp. 434-438
    • Hou, Y.1    Abrams, B.2    Vesborg, P.3    Björketun, M.4    Herbst, K.5    Bech, L.6
  • 14
    • 0001071096 scopus 로고
    • Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder
    • Matsumura, M., Y. Saho, and H. Tsubomura. 1983. Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. J. Phys. Chem. 87:3807–3808.
    • (1983) J. Phys. Chem. , vol.87 , pp. 3807-3808
    • Matsumura, M.1    Saho, Y.2    Tsubomura, H.3
  • 16
    • 0242669302 scopus 로고    scopus 로고
    • 3 photocatalysts with high crystallinity and surface nanostructure
    • 3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125:3082–3089.
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 3082-3089
    • Kato, H.1    Asakura, K.2    Kudo, A.3
  • 17
    • 84862094159 scopus 로고    scopus 로고
    • Photocatalytic water splitting using modified Gan: Zno solid solution under visible light: long-time operation and regeneration of activity
    • Ohno, T., L. Bai, T. Hisatomi, K. Maeda, and K. Domen. 2012. Photocatalytic water splitting using modified Gan: Zno solid solution under visible light: long-time operation and regeneration of activity. J. Am. Chem. Soc. 134:8254–8259.
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 8254-8259
    • Ohno, T.1    Bai, L.2    Hisatomi, T.3    Maeda, K.4    Domen, K.5
  • 18
    • 84897681005 scopus 로고    scopus 로고
    • BiVO4-Ru/SrTiO3: Rh composite Z-Scheme photocatalyst for solar water splitting
    • Jia, Q., A. Iwase, and A. Kudo. 2014. BiVO4-Ru/SrTiO3: Rh composite Z-Scheme photocatalyst for solar water splitting. Chem. Sci. 5:1513–1519.
    • (2014) Chem. Sci. , vol.5 , pp. 1513-1519
    • Jia, Q.1    Iwase, A.2    Kudo, A.3
  • 19
    • 33646018910 scopus 로고    scopus 로고
    • 2 solid solution photocatalysts with wide visible light absorption bands
    • 2 solid solution photocatalysts with wide visible light absorption bands. Chem. Mater. 18:1969–1975.
    • (2006) Chem. Mater. , vol.18 , pp. 1969-1975
    • Tsuji, I.1    Kato, H.2    Kudo, A.3
  • 20
    • 84939825576 scopus 로고    scopus 로고
    • Highly efficient temperature-induced visible light photocatalytic hydrogen production from water
    • Han, B., and Y. H. Hu. 2015. Highly efficient temperature-induced visible light photocatalytic hydrogen production from water. J. Phys. Chem. C 119:18927–18934.
    • (2015) J. Phys. Chem. C , vol.119 , pp. 18927-18934
    • Han, B.1    Hu, Y.H.2
  • 22
    • 25844518227 scopus 로고    scopus 로고
    • U.S. Geological Survey, Reston, VA
    • U.S. Geological Survey. 2011. Mineral commodity summaries. U.S. Geological Survey, Reston, VA.
    • (2011) Mineral commodity summaries
  • 23
    • 84873404226 scopus 로고    scopus 로고
    • Ni–Mo nanopowders for efficient electrochemical hydrogen evolution
    • McKone, J. R., B. F. Sadtler, C. A. Werlang, N. S. Lewis, and H. B. Gray. 2012. Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 3:166–169.
    • (2012) ACS Catal. , vol.3 , pp. 166-169
    • McKone, J.R.1    Sadtler, B.F.2    Werlang, C.A.3    Lewis, N.S.4    Gray, H.B.5
  • 24
    • 80053312320 scopus 로고    scopus 로고
    • Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts
    • Merki, D., and X. Hu. 2011. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 4:3878–3888.
    • (2011) Energy Environ. Sci. , vol.4 , pp. 3878-3888
    • Merki, D.1    Hu, X.2
  • 25
    • 84856690904 scopus 로고    scopus 로고
    • Molybdenum sulfides-efficient and viable materials for electro – and photoelectrocatalytic hydrogen evolution
    • Laursen, A. B., S. Kegnaes, S. Dahl, and I. Chorkendorff. 2012. Molybdenum sulfides-efficient and viable materials for electro – and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5:5577–5591.
    • (2012) Energy Environ. Sci. , vol.5 , pp. 5577-5591
    • Laursen, A.B.1    Kegnaes, S.2    Dahl, S.3    Chorkendorff, I.4
  • 26
    • 84875413255 scopus 로고    scopus 로고
    • The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
    • Chhowalla, M., H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang. 2013. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5:263–275.
    • (2013) Nat. Chem. , vol.5 , pp. 263-275
    • Chhowalla, M.1    Shin, H.S.2    Eda, G.3    Li, L.-J.4    Loh, K.P.5    Zhang, H.6
  • 27
    • 84910070418 scopus 로고    scopus 로고
    • Catalyzing the hydrogen evolution reaction (Her) with molybdenum sulfide nanomaterials
    • Benck, J. D., T. R. Hellstern, J. Kibsgaard, P. Chakthranont, and T. F. Jaramillo. 2014. Catalyzing the hydrogen evolution reaction (Her) with molybdenum sulfide nanomaterials. ACS Catal. 4:3957–3971.
    • (2014) ACS Catal. , vol.4 , pp. 3957-3971
    • Benck, J.D.1    Hellstern, T.R.2    Kibsgaard, J.3    Chakthranont, P.4    Jaramillo, T.F.5
  • 28
    • 84906224151 scopus 로고    scopus 로고
    • Amorphous molybdenum sulfides as hydrogen evolution catalysts
    • Morales-Guio, C. G., and X. Hu. 2014. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 47:2671–2681.
    • (2014) Acc. Chem. Res. , vol.47 , pp. 2671-2681
    • Morales-Guio, C.G.1    Hu, X.2
  • 29
    • 84901665086 scopus 로고    scopus 로고
    • Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution
    • Morales-Guio, C. G., L.-A. Stern, and X. Hu. 2014. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43:6555–6569.
    • (2014) Chem. Soc. Rev. , vol.43 , pp. 6555-6569
    • Morales-Guio, C.G.1    Stern, L.-A.2    Hu, X.3
  • 30
    • 84902163333 scopus 로고    scopus 로고
    • Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction
    • Yan, Y., B. Xia, Z. Xu, and X. Wang. 2014. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal. 4:1693–1705.
    • (2014) ACS Catal. , vol.4 , pp. 1693-1705
    • Yan, Y.1    Xia, B.2    Xu, Z.3    Wang, X.4
  • 31
    • 84934916291 scopus 로고    scopus 로고
    • Noble metal-free hydrogen evolution catalysts for water splitting
    • Zou, X., and Y. Zhang. 2015. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44:5148–5180.
    • (2015) Chem. Soc. Rev. , vol.44 , pp. 5148-5180
    • Zou, X.1    Zhang, Y.2
  • 32
    • 84952665890 scopus 로고    scopus 로고
    • Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors
    • Li, S.-L., K. Tsukagoshi, E. Orgiu, and P. Samori. 2016. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 45:118–151.
    • (2016) Chem. Soc. Rev. , vol.45 , pp. 118-151
    • Li, S.-L.1    Tsukagoshi, K.2    Orgiu, E.3    Samori, P.4
  • 33
    • 84963553271 scopus 로고    scopus 로고
    • Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
    • Mak, K. F., and J. Shan. 2016. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10:216–226.
    • (2016) Nat. Photonics , vol.10 , pp. 216-226
    • Mak, K.F.1    Shan, J.2
  • 34
    • 0000574610 scopus 로고
    • The crystal structure of molybdenite
    • Dickinson, R. G., and L. Pauling. 1923. The crystal structure of molybdenite. J. Am. Chem. Soc. 45:1466–1471.
    • (1923) J. Am. Chem. Soc. , vol.45 , pp. 1466-1471
    • Dickinson, R.G.1    Pauling, L.2
  • 35
    • 36849096704 scopus 로고
    • 2 several molecular layers thick
    • 2 several molecular layers thick. J. Appl. Phys. 37:1928–1929.
    • (1966) J. Appl. Phys. , vol.37 , pp. 1928-1929
    • Frindt, R.F.1
  • 37
    • 0001738649 scopus 로고
    • Ultrasharp interfaces grown with van der Waals epitaxy
    • Koma, A., and K. Yoshimura. 1986. Ultrasharp interfaces grown with van der Waals epitaxy. Surf. Sci. 174:556–560.
    • (1986) Surf. Sci. , vol.174 , pp. 556-560
    • Koma, A.1    Yoshimura, K.2
  • 41
    • 84860361457 scopus 로고    scopus 로고
    • 2 transition-metal oxides and dichalcogenides in a honeycomb-like structure
    • 2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116:8983–8999.
    • (2012) J. Phys. Chem. C , vol.116 , pp. 8983-8999
    • Ataca, C.1    S¸ahin, H.2    Ciraci, S.3
  • 42
    • 0001486580 scopus 로고
    • Transmission spectra of some transition metal dichalcogenides. II. Group via: trigonal prismatic coordination
    • Beal, A. R., J. C. Knights, and W. Y. Liang. 1972. Transmission spectra of some transition metal dichalcogenides. II. Group via: trigonal prismatic coordination. J. Phys. C: Solid State Phys. 5:3540.
    • (1972) J. Phys. C: Solid State Phys. , vol.5 , pp. 3540
    • Beal, A.R.1    Knights, J.C.2    Liang, W.Y.3
  • 46
    • 84978772054 scopus 로고    scopus 로고
    • 2 from stable 2H to metastable 1T and its memristive behavior
    • 2 from stable 2H to metastable 1T and its memristive behavior. RSC Adv. 6:65691–65697.
    • (2016) RSC Adv. , vol.6 , pp. 65691-65697
    • Cheng, P.1    Sun, K.2    Hu, Y.H.3
  • 47
    • 84937148964 scopus 로고    scopus 로고
    • Low-dimensional transition-metal dichalcogenides
    • in, M. Springborg, J. Joswig, ed., The Royal Society of Chemistry, London, UK
    • Kuc, A. 2015. Low-dimensional transition-metal dichalcogenides. Pp. 1–29 in M. Springborg, and J. Joswig, ed. Chemical modelling: volume 11. The Royal Society of Chemistry, London, UK.
    • (2015) Chemical modelling: volume 11 , pp. 1-29
    • Kuc, A.1
  • 57
    • 0034246232 scopus 로고    scopus 로고
    • Catalytic photooxidation of pentachlorophenol using semiconductor nanoclusters
    • Wilcoxon, J. P. 2000. Catalytic photooxidation of pentachlorophenol using semiconductor nanoclusters. J. Phys. Chem. B 104:7334–7343.
    • (2000) J. Phys. Chem. B , vol.104 , pp. 7334-7343
    • Wilcoxon, J.P.1
  • 60
    • 84855440960 scopus 로고    scopus 로고
    • 2 film-based field-effect transistors for sensing no at room temperature
    • 2 film-based field-effect transistors for sensing no at room temperature. Small 8:63–67.
    • (2012) Small , vol.8 , pp. 63-67
    • Li, H.1    Yin, Z.2    He, Q.3    Li, H.4    Huang, X.5    Lu, G.6
  • 61
    • 79551634368 scopus 로고    scopus 로고
    • Two-dimensional nanosheets produced by liquid exfoliation of layered materials
    • Coleman, J. N., et al. 2011. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571.
    • (2011) Science , vol.331 , pp. 568-571
    • Coleman, J.N.1
  • 62
    • 80855144823 scopus 로고    scopus 로고
    • A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues
    • Zhou, K.-G., N.-N. Mao, H.-X. Wang, Y. Peng, and H.-L. Zhang. 2011. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 50:10839–10842.
    • (2011) Angew. Chem. Int. Ed. , vol.50 , pp. 10839-10842
    • Zhou, K.-G.1    Mao, N.-N.2    Wang, H.-X.3    Peng, Y.4    Zhang, H.-L.5
  • 64
    • 84873688493 scopus 로고    scopus 로고
    • Metal dichalcogenide nanosheets: preparation, properties and applications
    • Huang, X., Z. Zeng, and H. Zhang. 2013. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42:1934–1946.
    • (2013) Chem. Soc. Rev. , vol.42 , pp. 1934-1946
    • Huang, X.1    Zeng, Z.2    Zhang, H.3
  • 69
    • 84885448597 scopus 로고    scopus 로고
    • 2/CdS photocatalyst for effective hydrogen production
    • 2013
    • 2/CdS photocatalyst for effective hydrogen production. Int. J. Photoenergy 2013, 247516–247521.
    • (2013) Int. J. Photoenergy , pp. 247516-247521
    • Liu, Y.1    Yu, H.2    Quan, X.3    Chen, S.4
  • 74
    • 84879511122 scopus 로고    scopus 로고
    • Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction
    • Popczun, E. J., J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, et al. 2013. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135:9267–9270.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 9267-9270
    • Popczun, E.J.1    McKone, J.R.2    Read, C.G.3    Biacchi, A.J.4    Wiltrout, A.M.5    Lewis, N.S.6
  • 75
    • 84900868846 scopus 로고    scopus 로고
    • Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles
    • Popczun, E. J., C. G. Read, C. W. Roske, N. S. Lewis, and R. E. Schaak. 2014. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 53:5427–5430.
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 5427-5430
    • Popczun, E.J.1    Read, C.G.2    Roske, C.W.3    Lewis, N.S.4    Schaak, R.E.5
  • 78
    • 84892890332 scopus 로고    scopus 로고
    • 2-Cds-[Gamma]-Taon hollow composites for enhanced visible-light-driven hydrogen evolution
    • 2-Cds-[Gamma]-Taon hollow composites for enhanced visible-light-driven hydrogen evolution. Chem. Commun. 50:1731–1734.
    • (2014) Chem. Commun. , vol.50 , pp. 1731-1734
    • Wang, Z.1    Hou, J.2    Yang, C.3    Jiao, S.4    Zhu, H.5
  • 79
    • 84905972330 scopus 로고    scopus 로고
    • Construction of two-dimensional MoS2/Cds P-N nanohybrids for highly efficient photocatalytic hydrogen evolution
    • Zhang, J., Z. Zhu, and X. Feng. 2014. Construction of two-dimensional MoS2/Cds P-N nanohybrids for highly efficient photocatalytic hydrogen evolution. Chemistry 20:10632–10635.
    • (2014) Chemistry , vol.20 , pp. 10632-10635
    • Zhang, J.1    Zhu, Z.2    Feng, X.3
  • 80
    • 84906861620 scopus 로고    scopus 로고
    • 2 onto a composite of reduced graphene oxide and Cds for synergic photocatalytic hydrogen generation
    • 2 onto a composite of reduced graphene oxide and Cds for synergic photocatalytic hydrogen generation. J. Phys. Chem. C 118:19842–19848.
    • (2014) J. Phys. Chem. C , vol.118 , pp. 19842-19848
    • Li, Y.1    Wang, H.2    Peng, S.3
  • 81
    • 84907483820 scopus 로고    scopus 로고
    • 2/Cds composite photocatalyst used for hydrogen production from water splitting under visible light
    • 2/Cds composite photocatalyst used for hydrogen production from water splitting under visible light. Chem. Eng. J. 260:642–648.
    • (2015) Chem. Eng. J. , vol.260 , pp. 642-648
    • Xu, J.1    Cao, X.2
  • 82
    • 84870848998 scopus 로고    scopus 로고
    • 2 cocatalyst confined on graphene sheets-the role of graphene
    • 2 cocatalyst confined on graphene sheets-the role of graphene. J. Phys. Chem. C 116:25415–25424.
    • (2012) J. Phys. Chem. C , vol.116 , pp. 25415-25424
    • Min, S.1    Lu, G.2
  • 83
    • 84880386732 scopus 로고    scopus 로고
    • Solar hydrogen generation by nanoscale p–n junction of P-type molybdenum disulfide/N-type nitrogen-doped reduced graphene oxide
    • Meng, F., J. Li, S. K. Cushing, M. Zhi, and N. Wu. 2013. Solar hydrogen generation by nanoscale p–n junction of P-type molybdenum disulfide/N-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 135:10286–10289.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 10286-10289
    • Meng, F.1    Li, J.2    Cushing, S.K.3    Zhi, M.4    Wu, N.5
  • 87
    • 84871971428 scopus 로고    scopus 로고
    • The influence of carbon content on the structure and properties of mosxcy photocatalysts for light-driven hydrogen generation
    • Djamil, J., S. A. Segler, A. Dabrowski, W. Bensch, A. Lotnyk, U. Schurmann, et al. 2013. The influence of carbon content on the structure and properties of mosxcy photocatalysts for light-driven hydrogen generation. Dalton Trans. 42:1287–1292.
    • (2013) Dalton Trans. , vol.42 , pp. 1287-1292
    • Djamil, J.1    Segler, S.A.2    Dabrowski, A.3    Bensch, W.4    Lotnyk, A.5    Schurmann, U.6
  • 88
    • 77953519949 scopus 로고    scopus 로고
    • 2: a quantum size-confined photocatalyst for hydrogen evolution from water under visible light
    • 2: a quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J. Phys. Chem. C 114:10628–10633.
    • (2010) J. Phys. Chem. C , vol.114 , pp. 10628-10633
    • Frame, F.A.1    Osterloh, F.E.2
  • 89
    • 0000975546 scopus 로고
    • Molybdenum disulfide as a hydrogen evolution catalyst for water photodecomposition on semiconductors
    • Sobczynski, A. 1991. Molybdenum disulfide as a hydrogen evolution catalyst for water photodecomposition on semiconductors. J. Catal. 131:156–166.
    • (1991) J. Catal. , vol.131 , pp. 156-166
    • Sobczynski, A.1
  • 90
    • 84872031069 scopus 로고    scopus 로고
    • 2 nanobelt heterostructures for enhanced photocatalytic activities
    • 2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9:140–147.
    • (2013) Small , vol.9 , pp. 140-147
    • Zhou, W.1    Yin, Z.2    Du, Y.3    Huang, X.4    Zeng, Z.5    Fan, Z.6
  • 96
    • 84883022082 scopus 로고    scopus 로고
    • 2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal Znin2s4 under visible light irradiations
    • 2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal Znin2s4 under visible light irradiations. Appl. Catal. B 144:521–527.
    • (2014) Appl. Catal. B , vol.144 , pp. 521-527
    • Wei, L.1    Chen, Y.2    Lin, Y.3    Wu, H.4    Yuan, R.5    Li, Z.6
  • 100
    • 84907993654 scopus 로고    scopus 로고
    • Enhanced photocatalytic hydrogen evolution from water by niobate single molecular sheets and ensembles
    • Nakagawa, K., T. Jia, W. Zheng, S. M. Fairclough, M. Katoh, S. Sugiyama, et al. 2014. Enhanced photocatalytic hydrogen evolution from water by niobate single molecular sheets and ensembles. Chem. Commun. 50:13702–13705.
    • (2014) Chem. Commun. , vol.50 , pp. 13702-13705
    • Nakagawa, K.1    Jia, T.2    Zheng, W.3    Fairclough, S.M.4    Katoh, M.5    Sugiyama, S.6
  • 101
    • 84904742339 scopus 로고    scopus 로고
    • Optical properties of metal–molybdenum disulfide hybrid nanosheets and their application for enhanced photocatalytic hydrogen evolution
    • Yang, L., et al. 2014. Optical properties of metal–molybdenum disulfide hybrid nanosheets and their application for enhanced photocatalytic hydrogen evolution. ACS Nano 8:6979–6985.
    • (2014) ACS Nano , vol.8 , pp. 6979-6985
    • Yang, L.1
  • 102
    • 84915821102 scopus 로고    scopus 로고
    • 3 heterostructures and their photocatalytic H2 evolution under UV irradiation
    • 3 heterostructures and their photocatalytic H2 evolution under UV irradiation. RSC Adv. 5:734–739.
    • (2015) RSC Adv. , vol.5 , pp. 734-739
    • Tian, Q.1    Zhang, L.2    Liu, J.3    Li, N.4    Ma, Q.5    Zhou, J.6
  • 104
    • 84911450002 scopus 로고    scopus 로고
    • 2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities
    • 2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities. Chem. Commun. 50:15447–15449.
    • (2014) Chem. Commun. , vol.50 , pp. 15447-15449
    • Shen, M.1    Yan, Z.2    Yang, L.3    Du, P.4    Zhang, J.5    Xiang, B.6
  • 110
    • 77956449509 scopus 로고    scopus 로고
    • Thinnest two-dimensional nanomaterial—graphene for solar energy
    • Hu, Y. H., H. Wang, and B. Hu. 2010. Thinnest two-dimensional nanomaterial—graphene for solar energy. ChemSusChem 3:782.
    • (2010) ChemSusChem , vol.3 , pp. 782
    • Hu, Y.H.1    Wang, H.2    Hu, B.3
  • 111
    • 80054954337 scopus 로고    scopus 로고
    • Graphene-based semiconductor photocatalysts
    • Xiang, Q., J. Yu, and M. Jaroniec. 2012. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41:782–796.
    • (2012) Chem. Soc. Rev. , vol.41 , pp. 782-796
    • Xiang, Q.1    Yu, J.2    Jaroniec, M.3
  • 112
    • 84921306509 scopus 로고    scopus 로고
    • 2 composites for highly enhanced photocatalytic properties
    • 2 composites for highly enhanced photocatalytic properties. Chem. Commun. 51:1709–1712.
    • (2015) Chem. Commun. , vol.51 , pp. 1709-1712
    • Gao, W.1    Wang, M.2    Ran, C.3    Li, L.4
  • 113
    • 79955891162 scopus 로고    scopus 로고
    • 2 Nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction
    • 2 Nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133:7296–7299.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 7296-7299
    • Li, Y.1    Wang, H.2    Xie, L.3    Liang, Y.4    Hong, G.5    Dai, H.6
  • 114
    • 57849130247 scopus 로고    scopus 로고
    • A metal-free polymeric photocatalyst for hydrogen production from water under visible light
    • Wang, X., K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, et al. 2009. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8:76–80.
    • (2009) Nat. Mater. , vol.8 , pp. 76-80
    • Wang, X.1    Maeda, K.2    Thomas, A.3    Takanabe, K.4    Xin, G.5    Carlsson, J.M.6
  • 115
    • 73349105606 scopus 로고    scopus 로고
    • Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization
    • Zhang, J., X. Chen, K. Takanabe, K. Maeda, K. Domen, J. D. Epping, et al. 2010. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. Int. Ed. 49:441–444.
    • (2010) Angew. Chem. Int. Ed. , vol.49 , pp. 441-444
    • Zhang, J.1    Chen, X.2    Takanabe, K.3    Maeda, K.4    Domen, K.5    Epping, J.D.6
  • 117
    • 80053330273 scopus 로고    scopus 로고
    • Controlled Van Der Waals heteroepitaxy of Inas nanowires on carbon honeycomb lattices
    • Hong, Y. J., and T. Fukui. 2011. Controlled Van Der Waals heteroepitaxy of Inas nanowires on carbon honeycomb lattices. ACS Nano 5:7576–7584.
    • (2011) ACS Nano , vol.5 , pp. 7576-7584
    • Hong, Y.J.1    Fukui, T.2
  • 119
    • 84903387057 scopus 로고    scopus 로고
    • Non-covalent doping of graphitic carbon nitride with ultrathin graphene oxide and molybdenum disulfide nanosheets: an effective binary heterojunction photocatalyst under visible light irradiation
    • Hu, S. W., L. W. Yang, Y. Tian, X. L. Wei, J. W. Ding, J. X. Zhong, et al. 2014. Non-covalent doping of graphitic carbon nitride with ultrathin graphene oxide and molybdenum disulfide nanosheets: an effective binary heterojunction photocatalyst under visible light irradiation. J. Colloid Interface Sci. 431:42–49.
    • (2014) J. Colloid Interface Sci. , vol.431 , pp. 42-49
    • Hu, S.W.1    Yang, L.W.2    Tian, Y.3    Wei, X.L.4    Ding, J.W.5    Zhong, J.X.6
  • 121
    • 0035891138 scopus 로고    scopus 로고
    • Photoelectrochemical cells
    • Gratzel, M. 2001. Photoelectrochemical cells. Nature 414:338–344.
    • (2001) Nature , vol.414 , pp. 338-344
    • Gratzel, M.1
  • 122
    • 84929346670 scopus 로고    scopus 로고
    • 2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions
    • 2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions. Green Chem. 17:2764–2768.
    • (2015) Green Chem. , vol.17 , pp. 2764-2768
    • Meng, C.1    Liu, Z.2    Zhang, T.3    Zhai, J.4
  • 123
    • 80755189427 scopus 로고    scopus 로고
    • 2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer
    • 2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 11:4774–4779.
    • (2011) Nano Lett. , vol.11 , pp. 4774-4779
    • Zhang, J.1    Yu, J.2    Zhang, Y.3    Li, Q.4    Gong, J.R.5
  • 124
    • 84870406684 scopus 로고    scopus 로고
    • Graphene transforms wide band Gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer
    • Zhang, Y., N. Zhang, Z.-R. Tang, and Y.-J. Xu. 2012. Graphene transforms wide band Gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 6:9777–9789.
    • (2012) ACS Nano , vol.6 , pp. 9777-9789
    • Zhang, Y.1    Zhang, N.2    Tang, Z.-R.3    Xu, Y.-J.4
  • 125
    • 0041075858 scopus 로고
    • Photochemical production of hydrogen with zinc sulfide suspensions
    • Reber, J. F., and K. Meier. 1984. Photochemical production of hydrogen with zinc sulfide suspensions. J. Phys. Chem. 88:5903–5913.
    • (1984) J. Phys. Chem. , vol.88 , pp. 5903-5913
    • Reber, J.F.1    Meier, K.2
  • 126
    • 84880610608 scopus 로고    scopus 로고
    • Metal sulphide semiconductors for photocatalytic hydrogen production
    • Zhang, K., and L. Guo. 2013. Metal sulphide semiconductors for photocatalytic hydrogen production. Catal. Sci. Technol. 3:1672–1690.
    • (2013) Catal. Sci. Technol. , vol.3 , pp. 1672-1690
    • Zhang, K.1    Guo, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.