-
1
-
-
44949284845
-
A review of the decomposition method and some recent results for nonlinear equations
-
[1] Adomian, G., A review of the decomposition method and some recent results for nonlinear equations. Comput. Math. Appl. 21:5 (1991), 101–127.
-
(1991)
Comput. Math. Appl.
, vol.21
, Issue.5
, pp. 101-127
-
-
Adomian, G.1
-
2
-
-
84933675204
-
Adomian decomposition method solution of population balance equations for aggregation, nucleation, growth and breakup processes
-
[2] Hasseine, A., Bart, H.J., Adomian decomposition method solution of population balance equations for aggregation, nucleation, growth and breakup processes. Appl. Math. Model. 39:7 (2015), 1975–1984.
-
(2015)
Appl. Math. Model.
, vol.39
, Issue.7
, pp. 1975-1984
-
-
Hasseine, A.1
Bart, H.J.2
-
3
-
-
0032308350
-
Approximate solution of nonlinear differential equations with convolution product nonlinearities
-
[3] He, J.-H., Approximate solution of nonlinear differential equations with convolution product nonlinearities. Comput. Methods Appl. Mech. Engrg. 167:1 (1998), 69–73.
-
(1998)
Comput. Methods Appl. Mech. Engrg.
, vol.167
, Issue.1
, pp. 69-73
-
-
He, J.-H.1
-
4
-
-
84932606890
-
The variational iteration method for solving new fourth-Order Emden–Fowler type equations
-
[4] Wazwaz, A.M., The variational iteration method for solving new fourth-Order Emden–Fowler type equations. Chem. Eng. Commun. 202:11 (2015), 1425–1437.
-
(2015)
Chem. Eng. Commun.
, vol.202
, Issue.11
, pp. 1425-1437
-
-
Wazwaz, A.M.1
-
5
-
-
0141961626
-
On the homotopy analysis method for nonlinear problems
-
[5] Liao, S., On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147:2 (2004), 499–513.
-
(2004)
Appl. Math. Comput.
, vol.147
, Issue.2
, pp. 499-513
-
-
Liao, S.1
-
6
-
-
84988268365
-
An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems: construction of homotopy polynomials
-
[6] Odibat, Z., Sami Bataineh, A., An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems: construction of homotopy polynomials. Math. Methods Appl. Sci. 38:5 (2015), 991–1000.
-
(2015)
Math. Methods Appl. Sci.
, vol.38
, Issue.5
, pp. 991-1000
-
-
Odibat, Z.1
Sami Bataineh, A.2
-
7
-
-
4243528488
-
New explicit solitary wave solutions and periodic wave solutions for Whitham–Broer–Kaup equation in shallow water
-
[7] Yan, Z., Zhang, H., New explicit solitary wave solutions and periodic wave solutions for Whitham–Broer–Kaup equation in shallow water. Phys. Lett. A 285:5 (2001), 355–362.
-
(2001)
Phys. Lett. A
, vol.285
, Issue.5
, pp. 355-362
-
-
Yan, Z.1
Zhang, H.2
-
8
-
-
0043124315
-
General projective Riccati equation method and exact solutions for generalized KdV-type and KdV–Burgers-type equations with nonlinear terms of any order
-
[8] Chen, Y., Li, B., General projective Riccati equation method and exact solutions for generalized KdV-type and KdV–Burgers-type equations with nonlinear terms of any order. Chaos Solitons Fractals 19:4 (2004), 977–984.
-
(2004)
Chaos Solitons Fractals
, vol.19
, Issue.4
, pp. 977-984
-
-
Chen, Y.1
Li, B.2
-
9
-
-
34249309606
-
Lattice Boltzmann model for two-dimensional unsteady Burgers’ equation
-
[9] Duan, Y., Liu, R., Lattice Boltzmann model for two-dimensional unsteady Burgers’ equation. J. Comput. Appl. Math. 206:1 (2007), 432–439.
-
(2007)
J. Comput. Appl. Math.
, vol.206
, Issue.1
, pp. 432-439
-
-
Duan, Y.1
Liu, R.2
-
10
-
-
53449090789
-
A Chebyshev spectral collocation method for solving Burgers’-type equations
-
[10] Khater, A.H., Temsah, R.S., Hassan, M.M., A Chebyshev spectral collocation method for solving Burgers’-type equations. J. Comput. Appl. Math. 222:2 (2008), 333–350.
-
(2008)
J. Comput. Appl. Math.
, vol.222
, Issue.2
, pp. 333-350
-
-
Khater, A.H.1
Temsah, R.S.2
Hassan, M.M.3
-
11
-
-
77952915896
-
Some properties of fractional Burgers equation
-
[11] Miškinis, P., Some properties of fractional Burgers equation. Math. Model. Anal. 7:1 (2002), 151–158.
-
(2002)
Math. Model. Anal.
, vol.7
, Issue.1
, pp. 151-158
-
-
Miškinis, P.1
-
12
-
-
84861882504
-
Parametric spline functions for the solution of the one time fractional Burgers’ equation
-
[12] El-Danaf, T.S., Hadhoud, A.R., Parametric spline functions for the solution of the one time fractional Burgers’ equation. Appl. Math. Model. 36:10 (2012), 4557–4564.
-
(2012)
Appl. Math. Model.
, vol.36
, Issue.10
, pp. 4557-4564
-
-
El-Danaf, T.S.1
Hadhoud, A.R.2
-
13
-
-
27744514614
-
Non-perturbative analytical solutions of the space-and time-fractional Burgers equations
-
[13] Momani, S., Non-perturbative analytical solutions of the space-and time-fractional Burgers equations. Chaos Solitons Fractals 28:4 (2006), 930–937.
-
(2006)
Chaos Solitons Fractals
, vol.28
, Issue.4
, pp. 930-937
-
-
Momani, S.1
-
14
-
-
43949121726
-
The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method
-
[14] Inc., M., The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345:1 (2008), 476–484.
-
(2008)
J. Math. Anal. Appl.
, vol.345
, Issue.1
, pp. 476-484
-
-
Inc., M.1
-
15
-
-
84961172616
-
Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow
-
[15] Yang, X.-J., Machado, J.A.T., Hristov, J., Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow. Nonlinear Dynam. 84:1 (2016), 3–7.
-
(2016)
Nonlinear Dynam.
, vol.84
, Issue.1
, pp. 3-7
-
-
Yang, X.-J.1
Machado, J.A.T.2
Hristov, J.3
-
16
-
-
84938139305
-
Local Fractional Integral Transforms and their Applications
-
Academic Press (Elsevier Science Publishers) Amsterdam, Heidelberg, London, New York
-
[16] Yang, X.-J., Baleanu, D., Srivastava, H.M., Local Fractional Integral Transforms and their Applications. 2016, Academic Press (Elsevier Science Publishers), Amsterdam, Heidelberg, London, New York.
-
(2016)
-
-
Yang, X.-J.1
Baleanu, D.2
Srivastava, H.M.3
-
17
-
-
84981516862
-
On exact traveling-wave solutions for local fractional Korteweg–de Vries equation
-
[17] Yang, X.-J., Machado, J.T., Baleanu, D., Cattani, C., On exact traveling-wave solutions for local fractional Korteweg–de Vries equation. Chaos, 26(8), 2016, 084312.
-
(2016)
Chaos
, vol.26
, Issue.8
-
-
Yang, X.-J.1
Machado, J.T.2
Baleanu, D.3
Cattani, C.4
-
18
-
-
84947277335
-
A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach
-
[18] Yang, X.-J., Machado, J.A.T., Srivastava, H.M., A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach. Appl. Math. Comput. 274 (2016), 143–151.
-
(2016)
Appl. Math. Comput.
, vol.274
, pp. 143-151
-
-
Yang, X.-J.1
Machado, J.A.T.2
Srivastava, H.M.3
-
19
-
-
84938064799
-
A novel schedule for solving the two-dimensional diffusion problem in fractal heat transfer
-
[19] Xu, S., Ling, X., Zhao, Y., Jassim, H.K., A novel schedule for solving the two-dimensional diffusion problem in fractal heat transfer. Therm. Sci. 19 (2015), 99–103.
-
(2015)
Therm. Sci.
, vol.19
, pp. 99-103
-
-
Xu, S.1
Ling, X.2
Zhao, Y.3
Jassim, H.K.4
-
20
-
-
84946556282
-
Local fractional differential equations by the Exp-function method
-
[20] Jia, Z., Hu, M., Chen, Q., Jai, S., Local fractional differential equations by the Exp-function method. Internat. J. Numer. Methods Heat Fluid Flow 25:8 (2015), 1845–1849.
-
(2015)
Internat. J. Numer. Methods Heat Fluid Flow
, vol.25
, Issue.8
, pp. 1845-1849
-
-
Jia, Z.1
Hu, M.2
Chen, Q.3
Jai, S.4
-
21
-
-
85009268522
-
Non-differentiable solutions for local fractional nonlinear Riccati differential equations
-
[21] Yang, X.-J., Srivastava, H.M., Torres, D.F.M., Zhang, Y.-D., Non-differentiable solutions for local fractional nonlinear Riccati differential equations. Fund. Inform. 145 (2016), 55–63.
-
(2016)
Fund. Inform.
, vol.145
, pp. 55-63
-
-
Yang, X.-J.1
Srivastava, H.M.2
Torres, D.F.M.3
Zhang, Y.-D.4
-
22
-
-
77956684069
-
-
Elsevier (North-Holland) Science Publishers Amsterdam
-
[22] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractinal Differential Equations North-Holland Mathematical Studies, vol. 204, 2006, Elsevier (North-Holland) Science Publishers, Amsterdam.
-
(2006)
Theory and Applications of Fractinal Differential Equations, North-Holland Mathematical Studies
, vol.204
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
-
23
-
-
84901942594
-
A new coupled fractional reduced differential transform method for the numerical solutions of (2+1)-dimensional time fractional coupled burger equations
-
[23] Ray, S.S., A new coupled fractional reduced differential transform method for the numerical solutions of (2+1)-dimensional time fractional coupled burger equations. Model. Simul. Eng. 2014 (2014), 1–12.
-
(2014)
Model. Simul. Eng.
, vol.2014
, pp. 1-12
-
-
Ray, S.S.1
-
24
-
-
84923359923
-
On analytical solutions of the fractional differential equation with uncertainty: application to the Basset problem
-
[24] Salahshour, S., Ahmadian, A., Senu, N., Baleanu, D., Agarwal, P., On analytical solutions of the fractional differential equation with uncertainty: application to the Basset problem. Entropy 17:2 (2015), 885–902.
-
(2015)
Entropy
, vol.17
, Issue.2
, pp. 885-902
-
-
Salahshour, S.1
Ahmadian, A.2
Senu, N.3
Baleanu, D.4
Agarwal, P.5
-
25
-
-
85009268520
-
New exact solutions of nonlinear fractional acoustic wave equations in ultrasound
-
[25] Ray, S.S., New exact solutions of nonlinear fractional acoustic wave equations in ultrasound. Comput. Math. Appl. 71:3 (2016), 859–868.
-
(2016)
Comput. Math. Appl.
, vol.71
, Issue.3
, pp. 859-868
-
-
Ray, S.S.1
-
26
-
-
84951276788
-
The general solution for impulsive differential equations with Riemann–Liouville
-
[26] Zhang, X., Agarwal, P., Liu, Z., Peng, H., The general solution for impulsive differential equations with Riemann–Liouville. Open Math. 13:1 (2015), 908–923.
-
(2015)
Open Math.
, vol.13
, Issue.1
, pp. 908-923
-
-
Zhang, X.1
Agarwal, P.2
Liu, Z.3
Peng, H.4
-
27
-
-
84962320965
-
New solitary wave solutions of time-fractional coupled Jaulent-Miodek equation by using two reliable methods
-
[27] Sahoo, S., Ray, S.S., New solitary wave solutions of time-fractional coupled Jaulent-Miodek equation by using two reliable methods. Nonlinear Dynam. 85:2 (2016), 1167–1176.
-
(2016)
Nonlinear Dynam.
, vol.85
, Issue.2
, pp. 1167-1176
-
-
Sahoo, S.1
Ray, S.S.2
-
28
-
-
84963742395
-
New analytical exact solutions of time fractional KdV-KZK equation by Kudryashov methods
-
[28] Ray, S.S., New analytical exact solutions of time fractional KdV-KZK equation by Kudryashov methods. Chin. Phys. B 25:4 (2016), 1–7.
-
(2016)
Chin. Phys. B
, vol.25
, Issue.4
, pp. 1-7
-
-
Ray, S.S.1
-
29
-
-
84986237286
-
Fractional calculus operators and their image formulas
-
[29] Agarwal, P., Choi, J., Fractional calculus operators and their image formulas. J. Korean Math. Soc. 53:5 (2016), 1183–1210.
-
(2016)
J. Korean Math. Soc.
, vol.53
, Issue.5
, pp. 1183-1210
-
-
Agarwal, P.1
Choi, J.2
-
30
-
-
84952987083
-
On some new integral inequalities of Gronwall–Bellman-Bihari type with delay for discontinuous functions and their applications
-
[30] Liu, X., Zhang, L., Agarwal, P., Wang, G., On some new integral inequalities of Gronwall–Bellman-Bihari type with delay for discontinuous functions and their applications. Indag. Math. 27:1 (2016), 1–10.
-
(2016)
Indag. Math.
, vol.27
, Issue.1
, pp. 1-10
-
-
Liu, X.1
Zhang, L.2
Agarwal, P.3
Wang, G.4
|