-
7
-
-
84867342337
-
A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L)
-
F. Prieur, G. Vilenskiy, and S. Holm A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L) J. Acoust. Soc. Am. 132 4 2012 2169 2172
-
(2012)
J. Acoust. Soc. Am.
, vol.132
, Issue.4
, pp. 2169-2172
-
-
Prieur, F.1
Vilenskiy, G.2
Holm, S.3
-
8
-
-
0002479243
-
Quasi-plane waves in the nonlinear acoustics of confined beams
-
E.A. Zabolotskaya, and R.V. Khokhlov Quasi-plane waves in the nonlinear acoustics of confined beams Sov. Phys. - Acoust. 15 1969 35 40
-
(1969)
Sov. Phys. - Acoust.
, vol.15
, pp. 35-40
-
-
Zabolotskaya, E.A.1
Khokhlov, R.V.2
-
9
-
-
0001536460
-
Equations of nonlinear acoustics
-
V.P. Kuznetsov Equations of nonlinear acoustics Sov. Phys. - Acoust. 16 1971 467 470
-
(1971)
Sov. Phys. - Acoust.
, vol.16
, pp. 467-470
-
-
Kuznetsov, V.P.1
-
13
-
-
85026343295
-
Numerical solutions of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation satisfying the Rankine-Hugoniot condition
-
G. Pinton, and G. Trahey Numerical solutions of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation satisfying the Rankine-Hugoniot condition J. Acoust. Soc. Am. 120 2006 3109
-
(2006)
J. Acoust. Soc. Am.
, vol.120
, pp. 3109
-
-
Pinton, G.1
Trahey, G.2
-
14
-
-
0036650479
-
A predictor-corrector approach for the numerical solution of fractional differential equations
-
K. Diethelm, N.J. Ford, and A.D. Freed A predictor-corrector approach for the numerical solution of fractional differential equations Nonlinear Dynam. 29 1-4 2002 3 22
-
(2002)
Nonlinear Dynam.
, vol.29
, Issue.1-4
, pp. 3-22
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
15
-
-
1542425102
-
Numerical solution of the space fractional Fokker-Planck equation
-
F. Liu, V. Anh, and I. Turner Numerical solution of the space fractional Fokker-Planck equation J. Comput. Appl. Math. 166 1 2004 209 219
-
(2004)
J. Comput. Appl. Math.
, vol.166
, Issue.1
, pp. 209-219
-
-
Liu, F.1
Anh, V.2
Turner, I.3
-
16
-
-
17444364074
-
Analytical solution of a dynamic system containing fractional derivative of order one-half by adomian decomposition method
-
S. Saha Ray, and R.K. Bera Analytical solution of a dynamic system containing fractional derivative of order one-half by adomian decomposition method Trans. ASME J. Appl. Mech. 72 2 2005 290 295
-
(2005)
Trans. ASME J. Appl. Mech.
, vol.72
, Issue.2
, pp. 290-295
-
-
Saha Ray, S.1
Bera, R.K.2
-
17
-
-
48349141442
-
A new approach for the application of adomian decmposition method for the solution of fractional space diffusion equation with insulated ends
-
S. Saha Ray A new approach for the application of adomian decmposition method for the solution of fractional space diffusion equation with insulated ends Appl. Math. Comput. 202 2 2008 544 549
-
(2008)
Appl. Math. Comput.
, vol.202
, Issue.2
, pp. 544-549
-
-
Saha Ray, S.1
-
18
-
-
39149140685
-
Application of generalized differential transform method to multi-order fractional differential equations
-
V.S. Ertürk, S. Momani, and Z. Odibat Application of generalized differential transform method to multi-order fractional differential equations Commun. Nonlinear Sci. Numer. Simul. 13 8 2008 1642 1654
-
(2008)
Commun. Nonlinear Sci. Numer. Simul.
, vol.13
, Issue.8
, pp. 1642-1654
-
-
Ertürk, V.S.1
Momani, S.2
Odibat, Z.3
-
19
-
-
84864671185
-
A generalized fractional sub-equation method for fractional differential equations with variable coefficients
-
B. Tong, Y. He, L. Wei, and X. Zhang A generalized fractional sub-equation method for fractional differential equations with variable coefficients Phys. Lett. A 376 38-39 2012 2588 2590
-
(2012)
Phys. Lett. A
, vol.376
, Issue.38-39
, pp. 2588-2590
-
-
Tong, B.1
He, Y.2
Wei, L.3
Zhang, X.4
-
20
-
-
84868214613
-
Numerical methods and analysis for a class of fractional advection-dispersion models
-
F. Liu, P. Zhuang, and K. Burrage Numerical methods and analysis for a class of fractional advection-dispersion models Comput. Math. Appl. 64 10 2012 2990 3007
-
(2012)
Comput. Math. Appl.
, vol.64
, Issue.10
, pp. 2990-3007
-
-
Liu, F.1
Zhuang, P.2
Burrage, K.3
-
21
-
-
84870265361
-
G'/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics
-
G'/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics Commun. Theor. Phys. 58 5 2012 623 630
-
(2012)
Commun. Theor. Phys.
, vol.58
, Issue.5
, pp. 623-630
-
-
Zheng, B.1
-
22
-
-
83555161701
-
On haar wavelet operational matrix of general order and its application for the numerical solution of fractional Bagley Torvik equation
-
S. Saha Ray On haar wavelet operational matrix of general order and its application for the numerical solution of fractional Bagley Torvik equation Appl. Math. Comput. 218 9 2012 5239 5248
-
(2012)
Appl. Math. Comput.
, vol.218
, Issue.9
, pp. 5239-5248
-
-
Saha Ray, S.1
-
23
-
-
84862302121
-
The approximate solution of fractional Fredholm integro-differential equations by variational iteration and homotopy perturbation methods
-
A. Kadem, and A. KIlIçman The approximate solution of fractional Fredholm integro-differential equations by variational iteration and homotopy perturbation methods Abstr. Appl. Anal. 2012 Article ID 486193
-
(2012)
Abstr. Appl. Anal.
-
-
Kadem, A.1
Kiliçman, A.2
-
24
-
-
84930752420
-
Numerical treatment for the solution of fractional fifth order Sawada-Kotera equation using second kind Chebyshev wavelet method
-
A.K. Gupta, and S. Saha Ray Numerical treatment for the solution of fractional fifth order Sawada-Kotera equation using second kind Chebyshev wavelet method Appl. Math. Model. 39 17 2015 5121 5130
-
(2015)
Appl. Math. Model.
, vol.39
, Issue.17
, pp. 5121-5130
-
-
Gupta, A.K.1
Saha Ray, S.2
-
25
-
-
84929193172
-
New approach to find exact solutions of time-fractional Kuramoto-Sivashinsky equation
-
S. Sahoo, and S. Saha Ray New approach to find exact solutions of time-fractional Kuramoto-Sivashinsky equation Phys. A 434 2015 240 245
-
(2015)
Phys. A
, vol.434
, pp. 240-245
-
-
Sahoo, S.1
Saha Ray, S.2
-
26
-
-
84930182035
-
Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations
-
S. Saha Ray, and S. Sahoo Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations Comput. Math. Appl. 70 2 2015 158 166
-
(2015)
Comput. Math. Appl.
, vol.70
, Issue.2
, pp. 158-166
-
-
Saha Ray, S.1
Sahoo, S.2
-
27
-
-
49049111091
-
The first integral method for solving some important nonlinear partial differential equations
-
K.R. Raslan The first integral method for solving some important nonlinear partial differential equations Nonlinear Dynam. 53 2008 281 286
-
(2008)
Nonlinear Dynam.
, vol.53
, pp. 281-286
-
-
Raslan, K.R.1
-
28
-
-
74449083761
-
The first integral method for modified Benjamin-Bona-Mahony equation
-
S. Abbasbandy, and A. Shirzadi The first integral method for modified Benjamin-Bona-Mahony equation Commun. Nonlinear Sci. Numer. Simul. 15 2010 1759 1764
-
(2010)
Commun. Nonlinear Sci. Numer. Simul.
, vol.15
, pp. 1759-1764
-
-
Abbasbandy, S.1
Shirzadi, A.2
-
29
-
-
84864025292
-
The first integral method for some time fractional differential equations
-
B. Lu The first integral method for some time fractional differential equations J. Math. Anal. Appl. 395 2012 684 693
-
(2012)
J. Math. Anal. Appl.
, vol.395
, pp. 684-693
-
-
Lu, B.1
-
30
-
-
84887932013
-
Exact solutions of two nonlinear partial differential equations by using the first integral method
-
H. Jafari, R. Soltani, C.M. Khalique, and D. Baleanu Exact solutions of two nonlinear partial differential equations by using the first integral method Bound. Value Probl. 2013 2013 117
-
(2013)
Bound. Value Probl.
, vol.2013
, pp. 117
-
-
Jafari, H.1
Soltani, R.2
Khalique, C.M.3
Baleanu, D.4
-
31
-
-
84940489366
-
The first integral method for exact solutions of nonlinear fractional differential equations
-
021020
-
A. Bekir, Ö. Güner, and Ö. Ünsal The first integral method for exact solutions of nonlinear fractional differential equations J. Comput. Nonlinear Dyn. 10 021020 2015 1 5
-
(2015)
J. Comput. Nonlinear Dyn.
, vol.10
, pp. 1-5
-
-
Bekir, A.1
Güner, O.2
Ünsal, O.3
-
33
-
-
84893937361
-
A short note on local fractional calculus of function of one variable
-
X.J. Yang A short note on local fractional calculus of function of one variable J. Appl. Lib. Inf. Sci. 1 1 2012 1 13
-
(2012)
J. Appl. Lib. Inf. Sci.
, vol.1
, Issue.1
, pp. 1-13
-
-
Yang, X.J.1
-
34
-
-
84874162681
-
The zero-mass renormalization group differential equations and limit cycles in non-smooth initial value problems
-
X.J. Yang The zero-mass renormalization group differential equations and limit cycles in non-smooth initial value problems Prespacetime J. 3 9 2012 913 923
-
(2012)
Prespacetime J.
, vol.3
, Issue.9
, pp. 913-923
-
-
Yang, X.J.1
-
35
-
-
84874182595
-
One-phase problems for discontinuous heat transfer in fractal media
-
358473
-
M.S. Hu, D. Baleanu, and X.J. Yang One-phase problems for discontinuous heat transfer in fractal media Math. Probl. Eng. 2013 2013 3 358473
-
(2013)
Math. Probl. Eng.
, vol.2013
, pp. 3
-
-
Hu, M.S.1
Baleanu, D.2
Yang, X.J.3
-
36
-
-
0042884163
-
The first integral method to study the Burgers-KdV equation
-
Z.S. Feng The first integral method to study the Burgers-KdV equation J. Phys. A: Math. Gen. 35 2002 343 349
-
(2002)
J. Phys. A: Math. Gen.
, vol.35
, pp. 343-349
-
-
Feng, Z.S.1
-
37
-
-
84879315907
-
Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator
-
W.H. Su, X.J. Yang, H. Jafari, and D. Baleanu Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator Adv. Difference Equ. 2013 97 2013 1 8
-
(2013)
Adv. Difference Equ.
, vol.2013
, Issue.97
, pp. 1-8
-
-
Su, W.H.1
Yang, X.J.2
Jafari, H.3
Baleanu, D.4
-
39
-
-
84855203771
-
Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
-
J.H. He, S.K. Elagan, and Z.B. Li Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus Phys. Lett. A 376 4 2012 257 259
-
(2012)
Phys. Lett. A
, vol.376
, Issue.4
, pp. 257-259
-
-
He, J.H.1
Elagan, S.K.2
Li, Z.B.3
-
40
-
-
84938223011
-
A variety of exact solutions for the time fractional Cahn-Allen equation
-
O. Güner, A. Bekir, and A.C. Cevikel A variety of exact solutions for the time fractional Cahn-Allen equation Eur. Phys. J. Plus 130 146 2015 10.1140/epjp/i2015-15146-9
-
(2015)
Eur. Phys. J. Plus
, vol.130
, Issue.146
-
-
Güner, O.1
Bekir, A.2
Cevikel, A.C.3
-
43
-
-
0035398615
-
Explicit exact solitary wave solutions for the Kundu equation and the derivative Schrödinger equation
-
Z. Feng, and X. Wang Explicit exact solitary wave solutions for the Kundu equation and the derivative Schrödinger equation Phys. Scr. 64 1 2001 7 14
-
(2001)
Phys. Scr.
, vol.64
, Issue.1
, pp. 7-14
-
-
Feng, Z.1
Wang, X.2
-
44
-
-
33845905203
-
Traveling waves to a Burgers-Korteweg-de Vries-type equation with higher-order nonlinearities
-
Z. Feng, and K. Roger Traveling waves to a Burgers-Korteweg-de Vries-type equation with higher-order nonlinearities J. Math. Anal. Appl. 328 2 2007 1435 1450
-
(2007)
J. Math. Anal. Appl.
, vol.328
, Issue.2
, pp. 1435-1450
-
-
Feng, Z.1
Roger, K.2
|