메뉴 건너뛰기




Volumn 71, Issue 3, 2016, Pages 859-868

New exact solutions of nonlinear fractional acoustic wave equations in ultrasound

Author keywords

Burgers Hopf equation; First integral method; Fractional complex transform; Khokhlov Zabolotskaya Kuznetsov equation; Local fractional derivative

Indexed keywords

ACOUSTIC WAVE PROPAGATION; ACOUSTIC WAVES; ACOUSTICS; HIGH PRESSURE EFFECTS; INTEGRAL EQUATIONS; NONLINEAR ANALYSIS; ULTRASONICS; WAVE EQUATIONS;

EID: 85009268520     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2016.01.001     Document Type: Article
Times cited : (60)

References (44)
  • 7
    • 84867342337 scopus 로고    scopus 로고
    • A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L)
    • F. Prieur, G. Vilenskiy, and S. Holm A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L) J. Acoust. Soc. Am. 132 4 2012 2169 2172
    • (2012) J. Acoust. Soc. Am. , vol.132 , Issue.4 , pp. 2169-2172
    • Prieur, F.1    Vilenskiy, G.2    Holm, S.3
  • 8
    • 0002479243 scopus 로고
    • Quasi-plane waves in the nonlinear acoustics of confined beams
    • E.A. Zabolotskaya, and R.V. Khokhlov Quasi-plane waves in the nonlinear acoustics of confined beams Sov. Phys. - Acoust. 15 1969 35 40
    • (1969) Sov. Phys. - Acoust. , vol.15 , pp. 35-40
    • Zabolotskaya, E.A.1    Khokhlov, R.V.2
  • 9
    • 0001536460 scopus 로고
    • Equations of nonlinear acoustics
    • V.P. Kuznetsov Equations of nonlinear acoustics Sov. Phys. - Acoust. 16 1971 467 470
    • (1971) Sov. Phys. - Acoust. , vol.16 , pp. 467-470
    • Kuznetsov, V.P.1
  • 13
    • 85026343295 scopus 로고    scopus 로고
    • Numerical solutions of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation satisfying the Rankine-Hugoniot condition
    • G. Pinton, and G. Trahey Numerical solutions of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation satisfying the Rankine-Hugoniot condition J. Acoust. Soc. Am. 120 2006 3109
    • (2006) J. Acoust. Soc. Am. , vol.120 , pp. 3109
    • Pinton, G.1    Trahey, G.2
  • 14
    • 0036650479 scopus 로고    scopus 로고
    • A predictor-corrector approach for the numerical solution of fractional differential equations
    • K. Diethelm, N.J. Ford, and A.D. Freed A predictor-corrector approach for the numerical solution of fractional differential equations Nonlinear Dynam. 29 1-4 2002 3 22
    • (2002) Nonlinear Dynam. , vol.29 , Issue.1-4 , pp. 3-22
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3
  • 15
    • 1542425102 scopus 로고    scopus 로고
    • Numerical solution of the space fractional Fokker-Planck equation
    • F. Liu, V. Anh, and I. Turner Numerical solution of the space fractional Fokker-Planck equation J. Comput. Appl. Math. 166 1 2004 209 219
    • (2004) J. Comput. Appl. Math. , vol.166 , Issue.1 , pp. 209-219
    • Liu, F.1    Anh, V.2    Turner, I.3
  • 16
    • 17444364074 scopus 로고    scopus 로고
    • Analytical solution of a dynamic system containing fractional derivative of order one-half by adomian decomposition method
    • S. Saha Ray, and R.K. Bera Analytical solution of a dynamic system containing fractional derivative of order one-half by adomian decomposition method Trans. ASME J. Appl. Mech. 72 2 2005 290 295
    • (2005) Trans. ASME J. Appl. Mech. , vol.72 , Issue.2 , pp. 290-295
    • Saha Ray, S.1    Bera, R.K.2
  • 17
    • 48349141442 scopus 로고    scopus 로고
    • A new approach for the application of adomian decmposition method for the solution of fractional space diffusion equation with insulated ends
    • S. Saha Ray A new approach for the application of adomian decmposition method for the solution of fractional space diffusion equation with insulated ends Appl. Math. Comput. 202 2 2008 544 549
    • (2008) Appl. Math. Comput. , vol.202 , Issue.2 , pp. 544-549
    • Saha Ray, S.1
  • 18
    • 39149140685 scopus 로고    scopus 로고
    • Application of generalized differential transform method to multi-order fractional differential equations
    • V.S. Ertürk, S. Momani, and Z. Odibat Application of generalized differential transform method to multi-order fractional differential equations Commun. Nonlinear Sci. Numer. Simul. 13 8 2008 1642 1654
    • (2008) Commun. Nonlinear Sci. Numer. Simul. , vol.13 , Issue.8 , pp. 1642-1654
    • Ertürk, V.S.1    Momani, S.2    Odibat, Z.3
  • 19
    • 84864671185 scopus 로고    scopus 로고
    • A generalized fractional sub-equation method for fractional differential equations with variable coefficients
    • B. Tong, Y. He, L. Wei, and X. Zhang A generalized fractional sub-equation method for fractional differential equations with variable coefficients Phys. Lett. A 376 38-39 2012 2588 2590
    • (2012) Phys. Lett. A , vol.376 , Issue.38-39 , pp. 2588-2590
    • Tong, B.1    He, Y.2    Wei, L.3    Zhang, X.4
  • 20
    • 84868214613 scopus 로고    scopus 로고
    • Numerical methods and analysis for a class of fractional advection-dispersion models
    • F. Liu, P. Zhuang, and K. Burrage Numerical methods and analysis for a class of fractional advection-dispersion models Comput. Math. Appl. 64 10 2012 2990 3007
    • (2012) Comput. Math. Appl. , vol.64 , Issue.10 , pp. 2990-3007
    • Liu, F.1    Zhuang, P.2    Burrage, K.3
  • 21
    • 84870265361 scopus 로고    scopus 로고
    • G'/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics
    • G'/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics Commun. Theor. Phys. 58 5 2012 623 630
    • (2012) Commun. Theor. Phys. , vol.58 , Issue.5 , pp. 623-630
    • Zheng, B.1
  • 22
    • 83555161701 scopus 로고    scopus 로고
    • On haar wavelet operational matrix of general order and its application for the numerical solution of fractional Bagley Torvik equation
    • S. Saha Ray On haar wavelet operational matrix of general order and its application for the numerical solution of fractional Bagley Torvik equation Appl. Math. Comput. 218 9 2012 5239 5248
    • (2012) Appl. Math. Comput. , vol.218 , Issue.9 , pp. 5239-5248
    • Saha Ray, S.1
  • 23
    • 84862302121 scopus 로고    scopus 로고
    • The approximate solution of fractional Fredholm integro-differential equations by variational iteration and homotopy perturbation methods
    • A. Kadem, and A. KIlIçman The approximate solution of fractional Fredholm integro-differential equations by variational iteration and homotopy perturbation methods Abstr. Appl. Anal. 2012 Article ID 486193
    • (2012) Abstr. Appl. Anal.
    • Kadem, A.1    Kiliçman, A.2
  • 24
    • 84930752420 scopus 로고    scopus 로고
    • Numerical treatment for the solution of fractional fifth order Sawada-Kotera equation using second kind Chebyshev wavelet method
    • A.K. Gupta, and S. Saha Ray Numerical treatment for the solution of fractional fifth order Sawada-Kotera equation using second kind Chebyshev wavelet method Appl. Math. Model. 39 17 2015 5121 5130
    • (2015) Appl. Math. Model. , vol.39 , Issue.17 , pp. 5121-5130
    • Gupta, A.K.1    Saha Ray, S.2
  • 25
    • 84929193172 scopus 로고    scopus 로고
    • New approach to find exact solutions of time-fractional Kuramoto-Sivashinsky equation
    • S. Sahoo, and S. Saha Ray New approach to find exact solutions of time-fractional Kuramoto-Sivashinsky equation Phys. A 434 2015 240 245
    • (2015) Phys. A , vol.434 , pp. 240-245
    • Sahoo, S.1    Saha Ray, S.2
  • 26
    • 84930182035 scopus 로고    scopus 로고
    • Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations
    • S. Saha Ray, and S. Sahoo Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations Comput. Math. Appl. 70 2 2015 158 166
    • (2015) Comput. Math. Appl. , vol.70 , Issue.2 , pp. 158-166
    • Saha Ray, S.1    Sahoo, S.2
  • 27
    • 49049111091 scopus 로고    scopus 로고
    • The first integral method for solving some important nonlinear partial differential equations
    • K.R. Raslan The first integral method for solving some important nonlinear partial differential equations Nonlinear Dynam. 53 2008 281 286
    • (2008) Nonlinear Dynam. , vol.53 , pp. 281-286
    • Raslan, K.R.1
  • 28
    • 74449083761 scopus 로고    scopus 로고
    • The first integral method for modified Benjamin-Bona-Mahony equation
    • S. Abbasbandy, and A. Shirzadi The first integral method for modified Benjamin-Bona-Mahony equation Commun. Nonlinear Sci. Numer. Simul. 15 2010 1759 1764
    • (2010) Commun. Nonlinear Sci. Numer. Simul. , vol.15 , pp. 1759-1764
    • Abbasbandy, S.1    Shirzadi, A.2
  • 29
    • 84864025292 scopus 로고    scopus 로고
    • The first integral method for some time fractional differential equations
    • B. Lu The first integral method for some time fractional differential equations J. Math. Anal. Appl. 395 2012 684 693
    • (2012) J. Math. Anal. Appl. , vol.395 , pp. 684-693
    • Lu, B.1
  • 30
    • 84887932013 scopus 로고    scopus 로고
    • Exact solutions of two nonlinear partial differential equations by using the first integral method
    • H. Jafari, R. Soltani, C.M. Khalique, and D. Baleanu Exact solutions of two nonlinear partial differential equations by using the first integral method Bound. Value Probl. 2013 2013 117
    • (2013) Bound. Value Probl. , vol.2013 , pp. 117
    • Jafari, H.1    Soltani, R.2    Khalique, C.M.3    Baleanu, D.4
  • 31
    • 84940489366 scopus 로고    scopus 로고
    • The first integral method for exact solutions of nonlinear fractional differential equations
    • 021020
    • A. Bekir, Ö. Güner, and Ö. Ünsal The first integral method for exact solutions of nonlinear fractional differential equations J. Comput. Nonlinear Dyn. 10 021020 2015 1 5
    • (2015) J. Comput. Nonlinear Dyn. , vol.10 , pp. 1-5
    • Bekir, A.1    Güner, O.2    Ünsal, O.3
  • 33
    • 84893937361 scopus 로고    scopus 로고
    • A short note on local fractional calculus of function of one variable
    • X.J. Yang A short note on local fractional calculus of function of one variable J. Appl. Lib. Inf. Sci. 1 1 2012 1 13
    • (2012) J. Appl. Lib. Inf. Sci. , vol.1 , Issue.1 , pp. 1-13
    • Yang, X.J.1
  • 34
    • 84874162681 scopus 로고    scopus 로고
    • The zero-mass renormalization group differential equations and limit cycles in non-smooth initial value problems
    • X.J. Yang The zero-mass renormalization group differential equations and limit cycles in non-smooth initial value problems Prespacetime J. 3 9 2012 913 923
    • (2012) Prespacetime J. , vol.3 , Issue.9 , pp. 913-923
    • Yang, X.J.1
  • 35
    • 84874182595 scopus 로고    scopus 로고
    • One-phase problems for discontinuous heat transfer in fractal media
    • 358473
    • M.S. Hu, D. Baleanu, and X.J. Yang One-phase problems for discontinuous heat transfer in fractal media Math. Probl. Eng. 2013 2013 3 358473
    • (2013) Math. Probl. Eng. , vol.2013 , pp. 3
    • Hu, M.S.1    Baleanu, D.2    Yang, X.J.3
  • 36
    • 0042884163 scopus 로고    scopus 로고
    • The first integral method to study the Burgers-KdV equation
    • Z.S. Feng The first integral method to study the Burgers-KdV equation J. Phys. A: Math. Gen. 35 2002 343 349
    • (2002) J. Phys. A: Math. Gen. , vol.35 , pp. 343-349
    • Feng, Z.S.1
  • 37
    • 84879315907 scopus 로고    scopus 로고
    • Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator
    • W.H. Su, X.J. Yang, H. Jafari, and D. Baleanu Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator Adv. Difference Equ. 2013 97 2013 1 8
    • (2013) Adv. Difference Equ. , vol.2013 , Issue.97 , pp. 1-8
    • Su, W.H.1    Yang, X.J.2    Jafari, H.3    Baleanu, D.4
  • 39
    • 84855203771 scopus 로고    scopus 로고
    • Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
    • J.H. He, S.K. Elagan, and Z.B. Li Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus Phys. Lett. A 376 4 2012 257 259
    • (2012) Phys. Lett. A , vol.376 , Issue.4 , pp. 257-259
    • He, J.H.1    Elagan, S.K.2    Li, Z.B.3
  • 40
    • 84938223011 scopus 로고    scopus 로고
    • A variety of exact solutions for the time fractional Cahn-Allen equation
    • O. Güner, A. Bekir, and A.C. Cevikel A variety of exact solutions for the time fractional Cahn-Allen equation Eur. Phys. J. Plus 130 146 2015 10.1140/epjp/i2015-15146-9
    • (2015) Eur. Phys. J. Plus , vol.130 , Issue.146
    • Güner, O.1    Bekir, A.2    Cevikel, A.C.3
  • 43
    • 0035398615 scopus 로고    scopus 로고
    • Explicit exact solitary wave solutions for the Kundu equation and the derivative Schrödinger equation
    • Z. Feng, and X. Wang Explicit exact solitary wave solutions for the Kundu equation and the derivative Schrödinger equation Phys. Scr. 64 1 2001 7 14
    • (2001) Phys. Scr. , vol.64 , Issue.1 , pp. 7-14
    • Feng, Z.1    Wang, X.2
  • 44
    • 33845905203 scopus 로고    scopus 로고
    • Traveling waves to a Burgers-Korteweg-de Vries-type equation with higher-order nonlinearities
    • Z. Feng, and K. Roger Traveling waves to a Burgers-Korteweg-de Vries-type equation with higher-order nonlinearities J. Math. Anal. Appl. 328 2 2007 1435 1450
    • (2007) J. Math. Anal. Appl. , vol.328 , Issue.2 , pp. 1435-1450
    • Feng, Z.1    Roger, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.