-
1
-
-
79952536112
-
Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles
-
(Springer, NY).
-
V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, NY, 2011).
-
(2011)
Fields and Media
-
-
Tarasov, V.E.1
-
2
-
-
84926399229
-
Fractional Calculus with Applications in Mechanics: Wave Propagation
-
(Wiley, NY).
-
T. M. Atanackovic et al., Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles (Wiley, NY, 2014).
-
(2014)
Impact and Variational Principles
-
-
Atanackovic, T.M.1
-
9
-
-
24144494623
-
An explicit and numerical solutions of the fractional KdV equation
-
S. Momani, "An explicit and numerical solutions of the fractional KdV equation," Math. Comput. Simul. 70(2), 110-118 (2005).
-
(2005)
Math. Comput. Simul.
, vol.70
, Issue.2
, pp. 110-118
-
-
Momani, S.1
-
10
-
-
34250643564
-
Homotopy perturbation method for fractional KdV equation
-
Q. Wang, "Homotopy perturbation method for fractional KdV equation," Appl. Math. Comput. 190(2), 1795-1802 (2007).
-
(2007)
Appl. Math. Comput.
, vol.190
, Issue.2
, pp. 1795-1802
-
-
Wang, Q.1
-
11
-
-
84866989353
-
Homotopy analysis method for space-and time-fractional KdV equation
-
S. Tauseef Mohyud-Din, A. Yildirim, and E. Yülüklü, "Homotopy analysis method for space-and time-fractional KdV equation," Int. J. Numer. Methods Heat Fluid Flow 22(7), 928-941 (2012).
-
(2012)
Int. J. Numer. Methods Heat Fluid Flow
, vol.22
, Issue.7
, pp. 928-941
-
-
Tauseef Mohyud-Din, S.1
Yildirim, A.2
Yülüklü, E.3
-
12
-
-
38049162125
-
Variational iteration method for solving the space-and time-fractional KdV equation
-
S. Momani, Z. Odibat, and A. Alawneh, "Variational iteration method for solving the space-and time-fractional KdV equation," Numer. Methods Partial Differ. Equations 24(1), 262-271 (2008).
-
(2008)
Numer. Methods Partial Differ. Equations
, vol.24
, Issue.1
, pp. 262-271
-
-
Momani, S.1
Odibat, Z.2
Alawneh, A.3
-
13
-
-
74449086085
-
Approximate analytical solution for the fractional modified KdV by differential transform method
-
M. Kurulay and M. Bayram, "Approximate analytical solution for the fractional modified KdV by differential transform method," Commun. Nonlinear Sci. Numer. Simul. 15(7), 1777-1782 (2010).
-
(2010)
Commun. Nonlinear Sci. Numer. Simul
, vol.15
, Issue.7
, pp. 1777-1782
-
-
Kurulay, M.1
Bayram, M.2
-
14
-
-
84896808168
-
Lie symmetry analysis of the time fractional KdV-type equation
-
J. Hu, Y. Ye, S. Shen, and J. Zhang, "Lie symmetry analysis of the time fractional KdV-type equation," Appl. Math. Comput. 233, 439-444 (2014).
-
(2014)
Appl. Math. Comput.
, vol.233
, pp. 439-444
-
-
Hu, J.1
Ye, Y.2
Shen, S.3
Zhang, J.4
-
17
-
-
84878016367
-
Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
-
X. J. Yang et al., "Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives," Phys. Lett. A 377(28), 1696-1700 (2013).
-
(2013)
Phys. Lett. A
, vol.377
, Issue.28
, pp. 1696-1700
-
-
Yang, X.J.1
-
18
-
-
84925482071
-
Fractional calculus for nanoscale flow and heat transfer
-
H. Y. Liu, J. H. He, and Z. B. Li, "Fractional calculus for nanoscale flow and heat transfer," Int. J. Numer. Methods Heat Fluid Flow 24(6), 1227-1250 (2014).
-
(2014)
Int. J. Numer. Methods Heat Fluid Flow
, vol.24
, Issue.6
, pp. 1227-1250
-
-
Liu, H.Y.1
He, J.H.2
Li, Z.B.3
-
19
-
-
84937390522
-
An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives
-
X. J. Yang and H. M. Srivastava, "An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives," Commun. Nonlinear Sci. Numer. Simul. 29(1), 499-504 (2015).
-
(2015)
Commun. Nonlinear Sci. Numer. Simul
, vol.29
, Issue.1
, pp. 499-504
-
-
Yang, X.J.1
Srivastava, H.M.2
-
20
-
-
84961172616
-
Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow
-
X. J. Yang, J. T. Machado, and J. Hristov, "Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow," Nonlinear Dyn. 84(1), 3-7 (2016).
-
(2016)
Nonlinear Dyn
, vol.84
, Issue.1
, pp. 3-7
-
-
Yang, X.J.1
Machado, J.T.2
Hristov, J.3
-
21
-
-
84939986878
-
Local fractional similarity solution for the diffusion equation defined on Cantor sets
-
X. J. Yang, D. Baleanu, and H. M. Srivastava, "Local fractional similarity solution for the diffusion equation defined on Cantor sets," Appl. Math. Lett. 47, 54-60 (2015).
-
(2015)
Appl. Math. Lett.
, vol.47
, pp. 54-60
-
-
Yang, X.J.1
Baleanu, D.2
Srivastava, H.M.3
-
22
-
-
84938081578
-
Local fractional Laplace series expansion method for diffusion equation arising in fractal heat transfer
-
S. P. Yan, "Local fractional Laplace series expansion method for diffusion equation arising in fractal heat transfer," Therm. Sci. 19(S1), 131-135 (2015).
-
(2015)
Therm. Sci
, vol.19
, pp. 131-135
-
-
Yan, S.P.1
-
23
-
-
84938087527
-
A decomposition method for solving diffusion equations via local fractional time derivative
-
H. Jafari, H. Tajadodi, and J. S. Johnston, "A decomposition method for solving diffusion equations via local fractional time derivative," Therm. Sci. 19(S1), 123-129 (2015).
-
(2015)
Therm. Sci
, vol.19
, pp. 123-129
-
-
Jafari, H.1
Tajadodi, H.2
Johnston, J.S.3
-
24
-
-
84946122365
-
Local fractional variational iteration algorithm II for non-homogeneous model associated with the non-differentiable heat flow
-
Y. Zhang, H. M. Srivastava, and M.-C. Baleanu, "Local fractional variational iteration algorithm II for non-homogeneous model associated with the non-differentiable heat flow," Adv. Mech. Eng. 7(10), 1-5 (2015).
-
(2015)
Adv. Mech. Eng
, vol.7
, Issue.10
, pp. 1-5
-
-
Zhang, Y.1
Srivastava, H.M.2
Baleanu, M.-C.3
|