메뉴 건너뛰기




Volumn 26, Issue 8, 2016, Pages

On exact traveling-wave solutions for local fractional Korteweg-de Vries equation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84981516862     PISSN: 10541500     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.4960543     Document Type: Article
Times cited : (204)

References (25)
  • 1
    • 79952536112 scopus 로고    scopus 로고
    • Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles
    • (Springer, NY).
    • V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, NY, 2011).
    • (2011) Fields and Media
    • Tarasov, V.E.1
  • 2
    • 84926399229 scopus 로고    scopus 로고
    • Fractional Calculus with Applications in Mechanics: Wave Propagation
    • (Wiley, NY).
    • T. M. Atanackovic et al., Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles (Wiley, NY, 2014).
    • (2014) Impact and Variational Principles
    • Atanackovic, T.M.1
  • 9
    • 24144494623 scopus 로고    scopus 로고
    • An explicit and numerical solutions of the fractional KdV equation
    • S. Momani, "An explicit and numerical solutions of the fractional KdV equation," Math. Comput. Simul. 70(2), 110-118 (2005).
    • (2005) Math. Comput. Simul. , vol.70 , Issue.2 , pp. 110-118
    • Momani, S.1
  • 10
    • 34250643564 scopus 로고    scopus 로고
    • Homotopy perturbation method for fractional KdV equation
    • Q. Wang, "Homotopy perturbation method for fractional KdV equation," Appl. Math. Comput. 190(2), 1795-1802 (2007).
    • (2007) Appl. Math. Comput. , vol.190 , Issue.2 , pp. 1795-1802
    • Wang, Q.1
  • 12
    • 38049162125 scopus 로고    scopus 로고
    • Variational iteration method for solving the space-and time-fractional KdV equation
    • S. Momani, Z. Odibat, and A. Alawneh, "Variational iteration method for solving the space-and time-fractional KdV equation," Numer. Methods Partial Differ. Equations 24(1), 262-271 (2008).
    • (2008) Numer. Methods Partial Differ. Equations , vol.24 , Issue.1 , pp. 262-271
    • Momani, S.1    Odibat, Z.2    Alawneh, A.3
  • 13
    • 74449086085 scopus 로고    scopus 로고
    • Approximate analytical solution for the fractional modified KdV by differential transform method
    • M. Kurulay and M. Bayram, "Approximate analytical solution for the fractional modified KdV by differential transform method," Commun. Nonlinear Sci. Numer. Simul. 15(7), 1777-1782 (2010).
    • (2010) Commun. Nonlinear Sci. Numer. Simul , vol.15 , Issue.7 , pp. 1777-1782
    • Kurulay, M.1    Bayram, M.2
  • 14
    • 84896808168 scopus 로고    scopus 로고
    • Lie symmetry analysis of the time fractional KdV-type equation
    • J. Hu, Y. Ye, S. Shen, and J. Zhang, "Lie symmetry analysis of the time fractional KdV-type equation," Appl. Math. Comput. 233, 439-444 (2014).
    • (2014) Appl. Math. Comput. , vol.233 , pp. 439-444
    • Hu, J.1    Ye, Y.2    Shen, S.3    Zhang, J.4
  • 17
    • 84878016367 scopus 로고    scopus 로고
    • Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
    • X. J. Yang et al., "Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives," Phys. Lett. A 377(28), 1696-1700 (2013).
    • (2013) Phys. Lett. A , vol.377 , Issue.28 , pp. 1696-1700
    • Yang, X.J.1
  • 18
    • 84925482071 scopus 로고    scopus 로고
    • Fractional calculus for nanoscale flow and heat transfer
    • H. Y. Liu, J. H. He, and Z. B. Li, "Fractional calculus for nanoscale flow and heat transfer," Int. J. Numer. Methods Heat Fluid Flow 24(6), 1227-1250 (2014).
    • (2014) Int. J. Numer. Methods Heat Fluid Flow , vol.24 , Issue.6 , pp. 1227-1250
    • Liu, H.Y.1    He, J.H.2    Li, Z.B.3
  • 19
    • 84937390522 scopus 로고    scopus 로고
    • An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives
    • X. J. Yang and H. M. Srivastava, "An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives," Commun. Nonlinear Sci. Numer. Simul. 29(1), 499-504 (2015).
    • (2015) Commun. Nonlinear Sci. Numer. Simul , vol.29 , Issue.1 , pp. 499-504
    • Yang, X.J.1    Srivastava, H.M.2
  • 20
    • 84961172616 scopus 로고    scopus 로고
    • Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow
    • X. J. Yang, J. T. Machado, and J. Hristov, "Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow," Nonlinear Dyn. 84(1), 3-7 (2016).
    • (2016) Nonlinear Dyn , vol.84 , Issue.1 , pp. 3-7
    • Yang, X.J.1    Machado, J.T.2    Hristov, J.3
  • 21
    • 84939986878 scopus 로고    scopus 로고
    • Local fractional similarity solution for the diffusion equation defined on Cantor sets
    • X. J. Yang, D. Baleanu, and H. M. Srivastava, "Local fractional similarity solution for the diffusion equation defined on Cantor sets," Appl. Math. Lett. 47, 54-60 (2015).
    • (2015) Appl. Math. Lett. , vol.47 , pp. 54-60
    • Yang, X.J.1    Baleanu, D.2    Srivastava, H.M.3
  • 22
    • 84938081578 scopus 로고    scopus 로고
    • Local fractional Laplace series expansion method for diffusion equation arising in fractal heat transfer
    • S. P. Yan, "Local fractional Laplace series expansion method for diffusion equation arising in fractal heat transfer," Therm. Sci. 19(S1), 131-135 (2015).
    • (2015) Therm. Sci , vol.19 , pp. 131-135
    • Yan, S.P.1
  • 23
    • 84938087527 scopus 로고    scopus 로고
    • A decomposition method for solving diffusion equations via local fractional time derivative
    • H. Jafari, H. Tajadodi, and J. S. Johnston, "A decomposition method for solving diffusion equations via local fractional time derivative," Therm. Sci. 19(S1), 123-129 (2015).
    • (2015) Therm. Sci , vol.19 , pp. 123-129
    • Jafari, H.1    Tajadodi, H.2    Johnston, J.S.3
  • 24
    • 84946122365 scopus 로고    scopus 로고
    • Local fractional variational iteration algorithm II for non-homogeneous model associated with the non-differentiable heat flow
    • Y. Zhang, H. M. Srivastava, and M.-C. Baleanu, "Local fractional variational iteration algorithm II for non-homogeneous model associated with the non-differentiable heat flow," Adv. Mech. Eng. 7(10), 1-5 (2015).
    • (2015) Adv. Mech. Eng , vol.7 , Issue.10 , pp. 1-5
    • Zhang, Y.1    Srivastava, H.M.2    Baleanu, M.-C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.