-
1
-
-
0037408898
-
Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics
-
Fan, E.: Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics. Chaos Solitons Fractals 16, 819–839 (2003)
-
(2003)
Chaos Solitons Fractals
, vol.16
, pp. 819-839
-
-
Fan, E.1
-
2
-
-
84878728294
-
Nonlinear fractional Jaulent–Miodek and Whitham–Broer–Kaup Equations within Sumudu transform
-
Atangana, A., Baleanu, D.: Nonlinear fractional Jaulent–Miodek and Whitham–Broer–Kaup Equations within Sumudu transform. Abstr. Appl. Anal. 2013, 8 (2013)
-
(2013)
Abstr. Appl. Anal
, vol.2013
, pp. 8
-
-
Atangana, A.1
Baleanu, D.2
-
3
-
-
34250384767
-
Nonlinear evolution equations associated with ‘Energy-dependent Schrödinger potential’
-
Jaulent, M., Miodek, I.: Nonlinear evolution equations associated with ‘Energy-dependent Schrödinger potential’. Lett. Math. Phys. 1, 243–250 (1976)
-
(1976)
Lett. Math. Phys.
, vol.1
, pp. 243-250
-
-
Jaulent, M.1
Miodek, I.2
-
4
-
-
0035531337
-
Reduction of dispersionless coupled Korteweg–de Vries equations to the Euler–Darboux equation
-
Matsuno, Y.: Reduction of dispersionless coupled Korteweg–de Vries equations to the Euler–Darboux equation. J. Math. Phys. 42(4), 1744–1760 (2001)
-
(2001)
J. Math. Phys.
, vol.42
, Issue.4
, pp. 1744-1760
-
-
Matsuno, Y.1
-
5
-
-
0242428849
-
A numerical method for solving Jaulent–Miodek equation
-
Kaya, D., El-Sayed, S.M.: A numerical method for solving Jaulent–Miodek equation. Phys. Lett. A 318, 345–353 (2003)
-
(2003)
Phys. Lett. A
, vol.318
, pp. 345-353
-
-
Kaya, D.1
El-Sayed, S.M.2
-
6
-
-
0031518253
-
The finite-band solution of the Jaulent–Miodek equation
-
Zhou, R.: The finite-band solution of the Jaulent–Miodek equation. J. Math. Phys. 38, 2535–2546 (1997)
-
(1997)
J. Math. Phys.
, vol.38
, pp. 2535-2546
-
-
Zhou, R.1
-
7
-
-
84991903633
-
N -Fold Darboux transformation of the Jaulent–Miodek equation
-
Xu, G.: N -Fold Darboux transformation of the Jaulent–Miodek equation. Appl. Math. 5, 2657–2663 (2014)
-
(2014)
Appl. Math.
, vol.5
, pp. 2657-2663
-
-
Xu, G.1
-
8
-
-
21144472674
-
New symmetries of the Jaulent–Miodek hierarchy
-
Ruan, H., Lou, S.: New symmetries of the Jaulent–Miodek hierarchy. J. Phys. Soc. Jpn. 62(6), 1917–1921 (1993)
-
(1993)
J. Phys. Soc. Jpn.
, vol.62
, Issue.6
, pp. 1917-1921
-
-
Ruan, H.1
Lou, S.2
-
9
-
-
84940532035
-
An investigation with Hermite Wavelets for accurate solution of fractional Jaulent–Miodek equation associated with energy-dependent Schrödinger potential
-
Gupta, A.K., Saha Ray, S.: An investigation with Hermite Wavelets for accurate solution of fractional Jaulent–Miodek equation associated with energy-dependent Schrödinger potential. Appl. Math. Comput. 270, 458–471 (2015)
-
(2015)
Appl. Math. Comput.
, vol.270
, pp. 458-471
-
-
Gupta, A.K.1
Saha Ray, S.2
-
10
-
-
84877634389
-
The fractional supertrace identity and its application to the super Jaulent–Miodek hierarchy
-
Wang, H., Xia, T.: The fractional supertrace identity and its application to the super Jaulent–Miodek hierarchy. Commun. Nonlinear Sci. Numer. Simul. 18, 2859–2867 (2013)
-
(2013)
Commun. Nonlinear Sci. Numer. Simul.
, vol.18
, pp. 2859-2867
-
-
Wang, H.1
Xia, T.2
-
13
-
-
84921789818
-
New exact solutions of fractional Zakharov–Kuznetsov and modified Zakharov–Kuznetsov equations using fractional sub-equation method
-
Saha Ray, S., Sahoo, S.: New exact solutions of fractional Zakharov–Kuznetsov and modified Zakharov–Kuznetsov equations using fractional sub-equation method. Commun. Theor. Phys. 63, 25–30 (2015)
-
(2015)
Commun. Theor. Phys.
, vol.63
, pp. 25-30
-
-
Saha Ray, S.1
Sahoo, S.2
-
14
-
-
84922739894
-
A novel analytical method with fractional complex transform for new exact solutions of time-fractional fifth-order Sawada–Kotera equation
-
Saha Ray, S., Sahoo, S.: A novel analytical method with fractional complex transform for new exact solutions of time-fractional fifth-order Sawada–Kotera equation. Rep. Math. Phys. 75(1), 63–72 (2015)
-
(2015)
Rep. Math. Phys.
, vol.75
, Issue.1
, pp. 63-72
-
-
Saha Ray, S.1
Sahoo, S.2
-
15
-
-
34247562366
-
The tanh-coth and the sech methods for exact solutions of the Jaulent–Miodek equation
-
Wazwaz, A.M.: The tanh-coth and the sech methods for exact solutions of the Jaulent–Miodek equation. Phys. Lett. A 366, 85–90 (2007)
-
(2007)
Phys. Lett. A
, vol.366
, pp. 85-90
-
-
Wazwaz, A.M.1
-
16
-
-
78650713427
-
The extended tanh-method for finding traveling wave solutions of nonlinear evolution equations
-
Zayed, E.M.E., Rahman, H.M.A.: The extended tanh-method for finding traveling wave solutions of nonlinear evolution equations. Appl. Math. 10, 235–245 (2010)
-
(2010)
Appl. Math.
, vol.10
, pp. 235-245
-
-
Zayed, E.M.E.1
Rahman, H.M.A.2
-
17
-
-
63449116923
-
The Homotopy analysis method for explicit analytical solutions of Jaulent–Miodek equations
-
Rashidi, M.M., Domairry, G., Dinarvand, S.: The Homotopy analysis method for explicit analytical solutions of Jaulent–Miodek equations. Numer. Methods Partial Differ. Equ. 25(2), 430–439 (2009)
-
(2009)
Numer. Methods Partial Differ. Equ.
, vol.25
, Issue.2
, pp. 430-439
-
-
Rashidi, M.M.1
Domairry, G.2
Dinarvand, S.3
-
18
-
-
84874127004
-
′/ G) -expansion method
-
Taha, W.M., Noorani, M.S.M., 7 (2013)
-
′/ G) -expansion method. Math. Probl. Eng. 2013, 7 (2013)
-
(2013)
Math. Probl. Eng.
-
-
-
19
-
-
38649132547
-
Generalized solitary solution and compacton-like solution of the Jaulent–Miodek equations using the Exp-function method
-
He, J.H., Zhang, L.N.: Generalized solitary solution and compacton-like solution of the Jaulent–Miodek equations using the Exp-function method. Phys. Lett. A 372(7), 1044–1047 (2008)
-
(2008)
Phys. Lett. A
, vol.372
, Issue.7
, pp. 1044-1047
-
-
He, J.H.1
Zhang, L.N.2
-
20
-
-
34250163508
-
New periodic solutions for nonlinear evolution equations using Exp-function method
-
He, J.H., Abdou, M.A.: New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos Solitons Fractals 34, 1421–1429 (2007)
-
(2007)
Chaos Solitons Fractals
, vol.34
, pp. 1421-1429
-
-
He, J.H.1
Abdou, M.A.2
-
21
-
-
77955655513
-
Numerical simulation of the Jaulent–Miodek equation by he’s homotopy perturbation method. World Appl
-
Yildirim, A., Kelleci, A.: Numerical simulation of the Jaulent–Miodek equation by he’s homotopy perturbation method. World Appl. Sci. J. 7, 84–89 (2009)
-
(2009)
Sci. J
, vol.7
, pp. 84-89
-
-
Yildirim, A.1
Kelleci, A.2
-
22
-
-
0001229736
-
Solitary wave solutions of nonlinear wave equations
-
Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650–654 (1992)
-
(1992)
Am. J. Phys.
, vol.60
, pp. 650-654
-
-
Malfliet, W.1
-
23
-
-
13544272576
-
The tanh method: Solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations
-
Wazwaz, A.M.: The tanh method: Solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations. Chaos Solitons Fractals 25, 55–63 (2005)
-
(2005)
Chaos Solitons Fractals
, vol.25
, pp. 55-63
-
-
Wazwaz, A.M.1
-
24
-
-
84870265361
-
′/ G) -Expansion method for solving fractional partial differential equations in the theory of mathematical physics
-
′/ G) -Expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 58, 623–630 (2012)
-
(2012)
Commun. Theor. Phys.
, vol.58
, pp. 623-630
-
-
Bin, Z.1
-
25
-
-
84970916142
-
New explicit solutions of the generalized (2 + 1) -dimensional Zakharov–Kuznetsov equation
-
Wang, G.W., Liu, X.Q., Zhang, Y.: New explicit solutions of the generalized (2 + 1) -dimensional Zakharov–Kuznetsov equation. Appl. Math. 3, 523–527 (2012)
-
(2012)
Appl. Math.
, vol.3
, pp. 523-527
-
-
Wang, G.W.1
Liu, X.Q.2
Zhang, Y.3
-
27
-
-
84893937361
-
A short note on local fractional calculus of function of one variable
-
Yang, X.J.: A short note on local fractional calculus of function of one variable. J. Appl. Libr. Inf. Sci. 1(1), 1–13 (2012)
-
(2012)
J. Appl. Libr. Inf. Sci.
, vol.1
, Issue.1
, pp. 1-13
-
-
Yang, X.J.1
-
28
-
-
84874162681
-
The zero-mass renormalization group differential equations and limit cycles in non-smooth initial value problems
-
Yang, X.J.: The zero-mass renormalization group differential equations and limit cycles in non-smooth initial value problems. Prespacetime J. 3(9), 913–923 (2012)
-
(2012)
Prespacetime J.
, vol.3
, Issue.9
, pp. 913-923
-
-
Yang, X.J.1
-
29
-
-
84874182595
-
One-phase problems for discontinuous heat transfer in fractal media
-
Hu, M.S., Baleanu, D., Yang, X.J.: One-phase problems for discontinuous heat transfer in fractal media. Math. Probl. Eng. 2013, 3 (2013)
-
(2013)
Math. Probl. Eng
, vol.2013
, pp. 3
-
-
Hu, M.S.1
Baleanu, D.2
Yang, X.J.3
-
30
-
-
84880174334
-
Fractional complex transform and exp-function methods for fractional differential equations
-
Bekir, A., Güner, Ö., Cevikel, A.C.: Fractional complex transform and exp-function methods for fractional differential equations. Abstr. Appl. Anal. 2013, 8 (2013)
-
(2013)
Abstr. Appl. Anal
, vol.2013
, pp. 8
-
-
Bekir, A.1
Güner, Ö.2
Cevikel, A.C.3
-
31
-
-
84879315907
-
Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator
-
Su, W.H., Yang, X.J., Jafari, H., Baleanu, D.: Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator. Adv. Differ. Equ. 97, 1–8 (2013)
-
(2013)
Adv. Differ. Equ.
, vol.97
, pp. 1-8
-
-
Su, W.H.1
Yang, X.J.2
Jafari, H.3
Baleanu, D.4
-
32
-
-
84938139305
-
-
Elsevier, London
-
Yang, X.J., Baleanu, D., Srivastava, H.M.: Local Fractional Integral Transforms and Their Applications. Academic Press (Elsevier), London (2016)
-
(2016)
Local Fractional Integral Transforms and Their Applications. Academic Press
-
-
Yang, X.J.1
Baleanu, D.2
Srivastava, H.M.3
-
33
-
-
84855203771
-
Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
-
He, J.H., Elagan, S.K., Li, Z.B.: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 376(4), 257–259 (2012)
-
(2012)
Phys. Lett. A
, vol.376
, Issue.4
, pp. 257-259
-
-
He, J.H.1
Elagan, S.K.2
Li, Z.B.3
-
34
-
-
84938223011
-
A variety of exact solutions for the time fractional Cahn–Allen equation. Eur. Phys. J
-
Güner, O., Bekir, A., Cevikel, A.C.: A variety of exact solutions for the time fractional Cahn–Allen equation. Eur. Phys. J. Plus. (2015). doi:10.1140/epjp/i2015-15146-9
-
(2015)
Plus
-
-
Güner, O.1
Bekir, A.2
Cevikel, A.C.3
|