-
4
-
-
85012858151
-
-
World Scientific Publishing Company Singapore, New Jersey, London and Hong Kong
-
Y. Zhou Basic Theory of Fractional Differential Equations 2014 World Scientific Publishing Company Singapore, New Jersey, London and Hong Kong
-
(2014)
Basic Theory of Fractional Differential Equations
-
-
Zhou, Y.1
-
5
-
-
84937451593
-
-
Series on Complexity, Nonlinearity and Chaos World Scientific Publishing Company Singapore, New Jersey, London and Hong Kong
-
D. Baleanu, and O.G. Mustafa Asymptotic Integration and Stability: For Ordinary, Functional and Discrete Differential Equations of Fractional Order Series on Complexity, Nonlinearity and Chaos vol. 4 2015 World Scientific Publishing Company Singapore, New Jersey, London and Hong Kong
-
(2015)
Asymptotic Integration and Stability: For Ordinary, Functional and Discrete Differential Equations of Fractional Order
, vol.4
-
-
Baleanu, D.1
Mustafa, O.G.2
-
6
-
-
33748959199
-
Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition
-
H. Jafari, and V. Daftardar-Gejji Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition Appl. Math. Comput. 180 2006 488 497
-
(2006)
Appl. Math. Comput.
, vol.180
, pp. 488-497
-
-
Jafari, H.1
Daftardar-Gejji, V.2
-
7
-
-
58149263050
-
Analytical solution of a fractional diffusion equation by variational iteration method
-
S. Das Analytical solution of a fractional diffusion equation by variational iteration method Comput. Math. Appl. 57 2009 483 487
-
(2009)
Comput. Math. Appl.
, vol.57
, pp. 483-487
-
-
Das, S.1
-
8
-
-
77954459409
-
Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems
-
S. Abbasbandy, and A. Shirzadi Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems Numer. Algorithm 54 2010 521 532
-
(2010)
Numer. Algorithm
, vol.54
, pp. 521-532
-
-
Abbasbandy, S.1
Shirzadi, A.2
-
9
-
-
76449113714
-
Fractional diffusion equations by the Kansa method
-
W. Chen, L. Ye, and H. Sun Fractional diffusion equations by the Kansa method Comput. Math. Appl. 59 2010 1614 1620
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1614-1620
-
-
Chen, W.1
Ye, L.2
Sun, H.3
-
10
-
-
84986922240
-
Discontinuous spectral element methods for time-and space-fractional advection equations
-
M. Zayernouri, and G.E. Karniadakis Discontinuous spectral element methods for time-and space-fractional advection equations SIAM J. Sci. Comput. 36 2014 B684 B707
-
(2014)
SIAM J. Sci. Comput.
, vol.36
, pp. B684-B707
-
-
Zayernouri, M.1
Karniadakis, G.E.2
-
11
-
-
80052270048
-
A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order
-
E.H. Doha, A.H. Bhrawy, and S.S. Ezz-Eldien A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order Comput. Math. Appl. 62 2011 2364 2373
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 2364-2373
-
-
Doha, E.H.1
Bhrawy, A.H.2
Ezz-Eldien, S.S.3
-
12
-
-
84871790575
-
Numerical methods for solving the multi-term time-fractional wave-diffusion equation
-
F. Liu, M.M. Meerschaert, R.J. McGough, P.-H. Zhuang, and Q.-X. Liu Numerical methods for solving the multi-term time-fractional wave-diffusion equation Fract. Calc. Appl. Anal. 16 2013 9 25
-
(2013)
Fract. Calc. Appl. Anal.
, vol.16
, pp. 9-25
-
-
Liu, F.1
Meerschaert, M.M.2
McGough, R.J.3
Zhuang, P.-H.4
Liu, Q.-X.5
-
14
-
-
34547639814
-
Multidimensional solutions of space-fractional diffusion equations
-
A. Hanyga Multidimensional solutions of space-fractional diffusion equations Proc. R. Soc. Lond. Ser. A 457 2001 2993 3005
-
(2001)
Proc. R. Soc. Lond. Ser. A
, vol.457
, pp. 2993-3005
-
-
Hanyga, A.1
-
15
-
-
34250215244
-
Solution of fractional differential equations by using differential transform method
-
A. Arikoglu, and I. Ozkol Solution of fractional differential equations by using differential transform method Chaos Solitons Fractals 34 2007 1473 1481
-
(2007)
Chaos Solitons Fractals
, vol.34
, pp. 1473-1481
-
-
Arikoglu, A.1
Ozkol, I.2
-
16
-
-
36549063424
-
A generalized differential transform method for linear partial differential equations of fractional order
-
Z. Odibat, and S. Momani A generalized differential transform method for linear partial differential equations of fractional order Appl. Math. Lett. 21 2008 194 199
-
(2008)
Appl. Math. Lett.
, vol.21
, pp. 194-199
-
-
Odibat, Z.1
Momani, S.2
-
17
-
-
74449086085
-
Approximate analytical solution for the fractional modified KdV by differential transform method
-
M. Kurulay, and M. Bayram Approximate analytical solution for the fractional modified KdV by differential transform method Commun. Nonlinear Sci. Numer. Simul. 15 2010 1777 1782
-
(2010)
Commun. Nonlinear Sci. Numer. Simul.
, vol.15
, pp. 1777-1782
-
-
Kurulay, M.1
Bayram, M.2
-
18
-
-
74149088718
-
Solutions of a fractional oscillator by using differential transform method
-
A. Al-Rabtah, V.S. Ertürk, and S. Momani Solutions of a fractional oscillator by using differential transform method Comput. Math. Appl. 59 2010 1356 1362
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1356-1362
-
-
Al-Rabtah, A.1
Ertürk, V.S.2
Momani, S.3
-
19
-
-
79952454335
-
Numerical solutions of the space- and time-fractional coupled Burger's equations by generalized differential transform method
-
J. Liu, and G. Hou Numerical solutions of the space- and time-fractional coupled Burger's equations by generalized differential transform method Appl. Math. Comput. 217 2011 7001 7008
-
(2011)
Appl. Math. Comput.
, vol.217
, pp. 7001-7008
-
-
Liu, J.1
Hou, G.2
-
21
-
-
0001707390
-
Local fractional Fokker-Planck equation
-
K.M. Kolwankar, and A.D. Gangal Local fractional Fokker-Planck equation Phys. Rev. Lett. 80 1998 214
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 214
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
22
-
-
0035834542
-
Static-kinematic duality and the principle of virtual work in the mechanics of fractal media
-
A. Carpinteri, B. Chiaia, and P. Cornetti Static-kinematic duality and the principle of virtual work in the mechanics of fractal media Comput. Methods Appl. Mech. Eng. 191 2001 3 19
-
(2001)
Comput. Methods Appl. Mech. Eng.
, vol.191
, pp. 3-19
-
-
Carpinteri, A.1
Chiaia, B.2
Cornetti, P.3
-
24
-
-
84893201036
-
Local fractional variational iteration and decomposition methods for wave equation on Cantor sets within local fractional operators
-
D. Baleanu, J.A.T. Machado, C. Cattani, M.C. Baleanu, and X.-J. Yang Local fractional variational iteration and decomposition methods for wave equation on Cantor sets within local fractional operators Abstr. Appl. Anal. 2014 2014 1 6
-
(2014)
Abstr. Appl. Anal.
, vol.2014
, pp. 1-6
-
-
Baleanu, D.1
Machado, J.A.T.2
Cattani, C.3
Baleanu, M.C.4
Yang, X.-J.5
-
25
-
-
84904166303
-
Variational iteration transform method for fractional differential equations with local fractional derivative
-
Y.-J. Yang, and L.-Q. Hua Variational iteration transform method for fractional differential equations with local fractional derivative Abstr. Appl. Anal. 2014 2014 1 9
-
(2014)
Abstr. Appl. Anal.
, vol.2014
, pp. 1-9
-
-
Yang, Y.-J.1
Hua, L.-Q.2
-
26
-
-
84939890949
-
A tutorial review on fractal space-time and fractional calculus
-
J.-H. He A tutorial review on fractal space-time and fractional calculus Int. J. Theor. Phys. 53 11 2014 3698 3718
-
(2014)
Int. J. Theor. Phys.
, vol.53
, Issue.11
, pp. 3698-3718
-
-
He, J.-H.1
-
27
-
-
84938056991
-
Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics
-
X.-J. Yang, H.M. Srivastava, and C. Cattani Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics Rom. Rep. Phys. 67 2015 752 761
-
(2015)
Rom. Rep. Phys.
, vol.67
, pp. 752-761
-
-
Yang, X.-J.1
Srivastava, H.M.2
Cattani, C.3
-
28
-
-
0742324870
-
The elastic problem for fractal media: Basic theory and finite element formulation
-
A. Carpinteri, B. Chiaia, and P. Cornetti The elastic problem for fractal media: basic theory and finite element formulation Comput. Struct. 82 2004 499 508
-
(2004)
Comput. Struct.
, vol.82
, pp. 499-508
-
-
Carpinteri, A.1
Chiaia, B.2
Cornetti, P.3
-
29
-
-
84939986878
-
Local fractional similarity solution for the diffusion equation defined on cantor sets
-
X.-J. Yang, D. Baleanu, and H.M. Srivastava Local fractional similarity solution for the diffusion equation defined on cantor sets Appl. Math. Lett. 47 2015 54 60
-
(2015)
Appl. Math. Lett.
, vol.47
, pp. 54-60
-
-
Yang, X.-J.1
Baleanu, D.2
Srivastava, H.M.3
-
30
-
-
84937390522
-
An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives
-
X.-J. Yang, and H.M. Srivastava An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives Commun. Nonlinear Sci. Numer. Simul. 29 2015 499 504
-
(2015)
Commun. Nonlinear Sci. Numer. Simul.
, vol.29
, pp. 499-504
-
-
Yang, X.-J.1
Srivastava, H.M.2
|