메뉴 건너뛰기




Volumn 13, Issue 1, 2015, Pages 908-930

The general solution for impulsive differential equations with Riemann-Liouville fractional-order q ∈ (1,2)

Author keywords

Fractional differential equations; General solution; Impulse; Riemann Liouville fractional derivative

Indexed keywords


EID: 84951276788     PISSN: None     EISSN: 23915455     Source Type: Journal    
DOI: 10.1515/math-2015-0073     Document Type: Article
Times cited : (40)

References (42)
  • 4
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • Diethelm, K, Ford, N, J: Analysis of fractional differential equations, J. Math. Anal. Appl. 265, 229-248 (2002)
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 5
    • 33845882236 scopus 로고    scopus 로고
    • A generalized Gronwall inequality and its application to a fractional differential equation
    • Ye, H, Gao, J, Ding, Y: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075-1081 (2007)
    • (2007) J. Math. Anal. Appl. , vol.328 , pp. 1075-1081
    • Ye, H.1    Gao, J.2    Ding, Y.3
  • 6
    • 34848916710 scopus 로고    scopus 로고
    • Existence results for fractional order functional differential equations with infinite delay
    • City Cityplace State
    • Benchohra, M, CityHenderson, J, CityplaceNtouyas, StateSK, Ouahab A: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338, 1340-1350 (2008)
    • (2008) J. Math. Anal. Appl. , vol.338 , pp. 1340-1350
    • Benchohra, M.1    Henderson, J.2    Ntouyas, S.K.3    Ouahab, A.4
  • 7
    • 77949264980 scopus 로고    scopus 로고
    • A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions
    • Agarwal, RP, Benchohra, M, Hamani, S: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl Math. 109, 973-1033 (2010)
    • (2010) Acta Appl Math. , vol.109 , pp. 973-1033
    • Agarwal, R.P.1    Benchohra, M.2    Hamani, S.3
  • 8
    • 74149090385 scopus 로고    scopus 로고
    • Analytic study on linear systems of fractional differential equations
    • Zaid M, Odibat: Analytic study on linear systems of fractional differential equations. Comput. Math. Appl. 59, 1171-1183 (2010)
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1171-1183
    • Odibat, Z.M.1
  • 9
    • 77956315480 scopus 로고    scopus 로고
    • Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory
    • Ahmad, B, Nieto, JJ: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topol. Methods Nonlinear Anal. 35(2), 295-304 (2010)
    • (2010) Topol. Methods Nonlinear Anal. , vol.35 , Issue.2 , pp. 295-304
    • Ahmad, B.1    Nieto, J.J.2
  • 10
    • 71649083074 scopus 로고    scopus 로고
    • On positive solutions of a nonlocal fractional boundary value problem
    • Bai, Z: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal.: TMA. 72, 916-24 (2010)
    • (2010) Nonlinear Anal.: TMA , vol.72 , pp. 916-924
    • Bai, Z.1
  • 11
    • 77049086990 scopus 로고    scopus 로고
    • Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay
    • Mophou, GM, N'Guérékata, GM: Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay. Appl. Math. Comput. 216, 61-69 (2010)
    • (2010) Appl. Math. Comput , vol.216 , pp. 61-69
    • Mophou, G.M.1    N'Guérékata, G.M.2
  • 12
    • 71549156256 scopus 로고    scopus 로고
    • Smoothness and stability of the solutions for nonlinear fractional differential equations
    • Deng, W: Smoothness and stability of the solutions for nonlinear fractional differential equations, Nonlinear Anal.: TMA. 72, 1768-1777 (2010)
    • (2010) Nonlinear Anal.: TMA , vol.72 , pp. 1768-1777
    • Deng, W.1
  • 13
    • 0037718003 scopus 로고    scopus 로고
    • Hadamard-type fractional calculus
    • Kilbas, AA: Hadamard-type fractional calculus. J. Korean Math. Soc. 38(6), 1191-1204 (2001)
    • (2001) J. Korean Math. Soc. , vol.38 , Issue.6 , pp. 1191-1204
    • Kilbas, A.A.1
  • 14
    • 0037095601 scopus 로고    scopus 로고
    • Compositions of Hadamard-type fractional integration operators and the semigroup property
    • placeCity
    • Butzer, PL, Kilbas, AA, Trujillo, JJ: Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 269, 387-400 (2002)
    • (2002) J. Math. Anal. Appl. , vol.269 , pp. 387-400
    • Butzer, P.L.1    Kilbas, A.A.2    Trujillo, J.J.3
  • 15
    • 0036600668 scopus 로고    scopus 로고
    • Mellin transform analysis and integration by parts for Hadamard-type fractional integrals
    • Cityplace
    • Butzer, PL, Kilbas, AA, CityplaceTrujillo, JJ: Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl. 270, 1-15 (2002)
    • (2002) J. Math. Anal. Appl. , vol.270 , pp. 1-15
    • Butzer, P.L.1    Kilbas, A.A.2    Trujillo, J.J.3
  • 16
    • 84904201400 scopus 로고    scopus 로고
    • Existence and Uniqueness Results for Hadamard-Type Fractional Differential Equations with Nonlocal Fractional Integral Boundary Conditions
    • Thiramanus, P, Ntouyas, StateSK, Tariboon, J: Existence and Uniqueness Results for Hadamard-Type Fractional Differential Equations with Nonlocal Fractional Integral Boundary Conditions. Abstr. Appl. Anal. (2014). Doi:10.1155/2014/902054
    • (2014) Abstr. Appl. Anal.
    • Thiramanus, P.1    Ntouyas, S.2    Tariboon, J.3
  • 17
    • 79960285223 scopus 로고    scopus 로고
    • Sequential fractional differential equations with Hadamard derivative
    • Klimek, M: Sequential fractional differential equations with Hadamard derivative. Commun. Nonlinear Sci. Numer. Simul. 16, 4689-4697 (2011)
    • (2011) Commun. Nonlinear Sci. Numer. Simul. , vol.16 , pp. 4689-4697
    • Klimek, M.1
  • 18
    • 84896926172 scopus 로고    scopus 로고
    • A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations
    • placeCity State
    • Ahmad, B, placeCityNtouyas, StateSK: A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 17, 348-360 (2014)
    • (2014) Fract. Calc. Appl. Anal. , vol.17 , pp. 348-360
    • Ahmad B1    Ntouyas, S.K.2
  • 19
    • 84871327547 scopus 로고    scopus 로고
    • Caputo-type modification of the Hadamard fractional derivatives
    • Jarad, F, Abdeljawad, T, Baleanu, D: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 142 (2012)
    • (2012) Adv. Differ. Equ. , vol.2012 , pp. 142
    • Jarad, F.1    Abdeljawad, T.2    Baleanu, D.3
  • 20
  • 21
    • 84937955041 scopus 로고    scopus 로고
    • The general solution of differential equations with Caputo-Hadamard fractional derivatives and impulsive effect
    • Zhang, X: The general solution of differential equations with Caputo-Hadamard fractional derivatives and impulsive effect. Adv. Differ. Equ. 2015, 215 (2015)
    • (2015) Adv. Differ. Equ. , vol.2015 , pp. 215
    • Zhang, X.1
  • 23
    • 84919935961 scopus 로고    scopus 로고
    • A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations
    • Bhrawy,AH, Zaky, MA: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876-895(2015)
    • (2015) J. Comput. Phys. , vol.281 , pp. 876-895
    • Bhrawy, A.H.1    Zaky, M.A.2
  • 24
    • 84897825779 scopus 로고    scopus 로고
    • Local fractional Fourier series solutions for nonhomogeneous heat equations arising in fractal heat flow with local fractional derivative
    • Yang, AM, Cattani, C, Zhang, C, Xie, GN, Yang, XJ: Local fractional Fourier series solutions for nonhomogeneous heat equations arising in fractal heat flow with local fractional derivative. Adv. Mech. Eng. (2014)
    • (2014) Adv. Mech. Eng.
    • Yang, A.M.1    Cattani, C.2    Zhang, C.3    Xie, G.N.4    Yang, X.J.5
  • 25
    • 84919935961 scopus 로고    scopus 로고
    • A fully spectral collocation approximation for multi-dimensional fractional Schrodinger equations
    • Bhrawy, AH, Abdelkawy, MA: A fully spectral collocation approximation for multi-dimensional fractional Schrodinger equations. J. Comput. Phys. 281 (15), 876-895(2015)
    • (2015) J. Comput. Phys. , vol.281 , Issue.15 , pp. 876-895
    • Bhrawy, A.H.1    Abdelkawy, M.A.2
  • 26
    • 84959146510 scopus 로고    scopus 로고
    • A numerical technique based on the shifted Legendre polynomials for solving the timefractional coupled KdV equation
    • Bhrawy, AH, Doha, EH, Ezz-Eldien, SS, Abdelkawy, MA: A numerical technique based on the shifted Legendre polynomials for solving the timefractional coupled KdV equation. Calcolo (2015) 10.1007/s10092-014-0132-x.
    • (2015) Calcolo
    • Bhrawy, A.H.1    Doha, E.H.2    Ezz-Eldien, S.S.3    Abdelkawy, M.A.4
  • 27
    • 84968833938 scopus 로고    scopus 로고
    • A highly accurate collocation algorithm for 1+1 and 2+1 fractional percolation equations
    • Bhrawy, AH: A highly accurate collocation algorithm for 1+1 and 2+1 fractional percolation equations. J. Vib. Control (2015) DOI: 10.1177/1077546315597815
    • (2015) J. Vib. Control
    • Bhrawy, A.H.1
  • 28
    • 84925537827 scopus 로고    scopus 로고
    • Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation
    • Bhrawy, AH, Zaky, MA: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation.Nonlinear Dynam. 80 (1), 101-116 (2015)
    • (2015) Nonlinear Dynam. , vol.80 , Issue.1 , pp. 101-116
    • Bhrawy, A.H.1    Zaky, M.A.2
  • 29
    • 67549135865 scopus 로고    scopus 로고
    • Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations
    • Ahmad, B, Sivasundaram, S: Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations. Nonlinear Anal.: HS. 3, 251-258 (2009)
    • (2009) Nonlinear Anal.: HS. , vol.3 , pp. 251-258
    • Ahmad, B.1    Sivasundaram, S.2
  • 30
    • 70350572941 scopus 로고    scopus 로고
    • Existence of solutions for impulsive integral boundary value problems of fractional order
    • Ahmad, B, Sivasundaram, S: Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Anal.: HS. 4, 134-141 (2010)
    • (2010) Nonlinear Anal.: HS. , vol.4 , pp. 134-141
    • Ahmad, B.1    Sivasundaram, S.2
  • 31
    • 77950189802 scopus 로고    scopus 로고
    • Existence results for the three-point impulsive boundary value problem involving fractional differential equations
    • Tian, Y, Bai, Z: Existence results for the three-point impulsive boundary value problem involving fractional differential equations. Comput. Math. Appl. 59, 2601-2609 (2010)
    • (2010) Comput. Math. Appl. , vol.59 , pp. 2601-2609
    • Tian, Y.1    Bai, Z.2
  • 32
    • 85087597211 scopus 로고    scopus 로고
    • Some results on impulsive boundary value problem for fractional differential inclusions
    • Cao, J, Chen, H: Some results on impulsive boundary value problem for fractional differential inclusions. Electron. J. Qual. Theory Differ. Equ. 2010 (11) 1-24 (2010)
    • (2010) Electron. J. Qual. Theory Differ. Equ. , vol.2010 , Issue.11 , pp. 1-24
    • Cao, J.1    Chen, H.2
  • 33
    • 80052272462 scopus 로고    scopus 로고
    • Impulsive boundary value problem for nonlinear differential equations of fractional order
    • Wang, X: Impulsive boundary value problem for nonlinear differential equations of fractional order. Comput. Math. Appl. 62, 2383-2391(2011)
    • (2011) Comput. Math. Appl. , vol.62 , pp. 2383-2391
    • Wang, X.1
  • 34
    • 84885182412 scopus 로고    scopus 로고
    • Stability analysis of impulsive functional systems of fractional order
    • Stamova, I, Stamov, G: Stability analysis of impulsive functional systems of fractional order. Commun Nonlinear Sci Numer Simulat. 19, 702-709 (2014)
    • (2014) Commun Nonlinear Sci Numer Simulat. , vol.19 , pp. 702-709
    • Stamova, I.1    Stamov, G.2
  • 35
    • 83055187812 scopus 로고    scopus 로고
    • Impulsive hyperbolic functional differential equations of fractional order with state-dependent delay
    • Abbas, S, Benchohra, M: Impulsive hyperbolic functional differential equations of fractional order with state-dependent delay. Fract. Calc. Appl. Anal. 13, 225-242 (2010)
    • (2010) Fract. Calc. Appl. Anal. , vol.13 , pp. 225-242
    • Abbas, S.1    Benchohra, M.2
  • 36
    • 77955435963 scopus 로고    scopus 로고
    • Upper and lower solutions method for impulsive hyperbolic differential equations with fractional order
    • Abbas, S, Benchohra, M: Upper and lower solutions method for impulsive hyperbolic differential equations with fractional order. Nonlinear Anal.: HS.4, 406-413 (2010)
    • (2010) Nonlinear Anal.: HS. , vol.4 , pp. 406-413
    • Abbas, S.1    Benchohra, M.2
  • 37
    • 77956189880 scopus 로고    scopus 로고
    • Darboux problem for impulsive partial hyperbolic differential equations of fractional order with variable times and infinite delay
    • Abbas, S, Agarwal, RP, Benchohra, M: Darboux problem for impulsive partial hyperbolic differential equations of fractional order with variable times and infinite delay. Nonlinear Anal.: HS. 4, 818-829 (2010)
    • (2010) Nonlinear Anal.: HS. , vol.4 , pp. 818-829
    • Abbas, S.1    Agarwal, R.P.2    Benchohra, M.3
  • 38
    • 84872772792 scopus 로고    scopus 로고
    • Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative
    • Abbas, S, Benchohra, M, Gorniewicz, L: Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative. Sci. Math. Jpn. 72 (1), 49-60 (2010)
    • (2010) Sci. Math. Jpn. , vol.72 , Issue.1 , pp. 49-60
    • Abbas, S.1    Benchohra, M.2    Gorniewicz, L.3
  • 39
    • 84860856094 scopus 로고    scopus 로고
    • Impulsive partial hyperbolic fractional order differential equations in banach spaces
    • Benchohra, M, Seba, D: Impulsive partial hyperbolic fractional order differential equations in banach spaces. J. Fract. Calc. Appl. 1 (4), 1-12 (2011)
    • (2011) J. Fract. Calc. Appl. , vol.1 , Issue.4 , pp. 1-12
    • Benchohra, M.1    Seba, D.2
  • 40
    • 84931560736 scopus 로고    scopus 로고
    • Impulsive fractional partial differential equations
    • Guo, T, Zhang, K: Impulsive fractional partial differential equations. Appl. Math. Comput. 257, 581-590 (2015)
    • (2015) Appl. Math. Comput. , vol.257 , pp. 581-590
    • Guo, T.1    Zhang, K.2
  • 41
    • 84907540956 scopus 로고    scopus 로고
    • On the concept of general solution for impulsive differential equations of fractional order q ∈ (0,1)
    • Zhang, X, Zhang, X, Zhang, M: On the concept of general solution for impulsive differential equations of fractional order q ∈ (0,1). Appl. Math. Comput. 247, 72-89 (2014)
    • (2014) Appl. Math. Comput. , vol.247 , pp. 72-89
    • Zhang, X.1    Zhang, X.2    Zhang, M.3
  • 42
    • 84936864148 scopus 로고    scopus 로고
    • On the concept of general solutions for impulsive differential equations of fractional order q ∈ (1, 2)
    • Zhang, X: On the concept of general solutions for impulsive differential equations of fractional order q ∈ (1, 2). Appl. Math. Comput. 268, 103-120 (2015)
    • (2015) Appl. Math. Comput. , vol.268 , pp. 103-120
    • Zhang, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.