-
1
-
-
0037083376
-
Capturing chromosome conformation
-
1 Dekker, J., Rippe, K., Dekker, M., Kleckner, N., Capturing chromosome conformation. Science 295 (2002), 1306–1311.
-
(2002)
Science
, vol.295
, pp. 1306-1311
-
-
Dekker, J.1
Rippe, K.2
Dekker, M.3
Kleckner, N.4
-
2
-
-
84855297335
-
A decade of 3C technologies: insights into nuclear organization
-
2 de Wit, E., de Laat, W., A decade of 3C technologies: insights into nuclear organization. Genes Dev 26 (2012), 11–24.
-
(2012)
Genes Dev
, vol.26
, pp. 11-24
-
-
de Wit, E.1
de Laat, W.2
-
3
-
-
84861100147
-
Spatial partitioning of the regulatory landscape of the X-inactivation centre
-
3 Nora, E.P., Lajoie, B.R., Schulz, E.G., Giorgetti, L., Okamoto, I., Servant, N., Piolot, T., van Berkum, N.L., Meisig, J., Sedat, J., et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485 (2012), 381–385.
-
(2012)
Nature
, vol.485
, pp. 381-385
-
-
Nora, E.P.1
Lajoie, B.R.2
Schulz, E.G.3
Giorgetti, L.4
Okamoto, I.5
Servant, N.6
Piolot, T.7
van Berkum, N.L.8
Meisig, J.9
Sedat, J.10
-
4
-
-
84919949716
-
A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
-
The authors perform high resolution Hi-C in different cell lines and different experimental conditions (fixed/unfixed). Beyond the TAD structure of the genome, they identify loops between convergent CTCF binding sites, which are conserved between the mouse and the human genome.
-
4•• Rao, S.S., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159 (2014), 1665–1680 The authors perform high resolution Hi-C in different cell lines and different experimental conditions (fixed/unfixed). Beyond the TAD structure of the genome, they identify loops between convergent CTCF binding sites, which are conserved between the mouse and the human genome.
-
(2014)
Cell
, vol.159
, pp. 1665-1680
-
-
Rao, S.S.1
Huntley, M.H.2
Durand, N.C.3
Stamenova, E.K.4
Bochkov, I.D.5
Robinson, J.T.6
Sanborn, A.L.7
Machol, I.8
Omer, A.D.9
Lander, E.S.10
-
5
-
-
84955290042
-
Super-resolution imaging reveals distinct chromatin folding for different epigenetic states
-
Using fluorescent in situ hybridization and 3D Stochastic Optical Reconstruction Microscopy (STORM), a super resolution technique, the authors demonstrate that Polycomb, active and unmodified histone H3 epigenomic domains have different compaction levels. Moreover, they observe directly that epigenetically similar domains preferentially contact each other.
-
5• Boettiger, A.N., Bintu, B., Moffitt, J.R., Wang, S., Beliveau, B.J., Fudenberg, G., Imakaev, M., Mirny, L.A., Wu, C.-t., Zhuang, X., Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529 (2016), 418–422 Using fluorescent in situ hybridization and 3D Stochastic Optical Reconstruction Microscopy (STORM), a super resolution technique, the authors demonstrate that Polycomb, active and unmodified histone H3 epigenomic domains have different compaction levels. Moreover, they observe directly that epigenetically similar domains preferentially contact each other.
-
(2016)
Nature
, vol.529
, pp. 418-422
-
-
Boettiger, A.N.1
Bintu, B.2
Moffitt, J.R.3
Wang, S.4
Beliveau, B.J.5
Fudenberg, G.6
Imakaev, M.7
Mirny, L.A.8
Wu, C.-T.9
Zhuang, X.10
-
6
-
-
84946811459
-
Nanoscale spatial organization of the HoxD gene cluster in distinct transcriptional states
-
6 Fabre, P.J., Benke, A., Joye, E., Nguyen Huynh, T.H., Manley, S., Duboule, D., Nanoscale spatial organization of the HoxD gene cluster in distinct transcriptional states. Proc Natl Acad Sci U S A 112 (2015), 13964–13969.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 13964-13969
-
-
Fabre, P.J.1
Benke, A.2
Joye, E.3
Nguyen Huynh, T.H.4
Manley, S.5
Duboule, D.6
-
7
-
-
70349873824
-
Comprehensive mapping of long-range interactions reveals folding principles of the human genome
-
7 Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326 (2009), 289–293.
-
(2009)
Science
, vol.326
, pp. 289-293
-
-
Lieberman-Aiden, E.1
van Berkum, N.L.2
Williams, L.3
Imakaev, M.4
Ragoczy, T.5
Telling, A.6
Amit, I.7
Lajoie, B.R.8
Sabo, P.J.9
Dorschner, M.O.10
-
8
-
-
84938287195
-
Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms
-
8 Marbouty, M., Cournac, A., Flot, J.F., Marie-Nelly, H., Mozziconacci, J., Koszul, R., Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. Elife, 3, 2014, e03318.
-
(2014)
Elife
, vol.3
, pp. e03318
-
-
Marbouty, M.1
Cournac, A.2
Flot, J.F.3
Marie-Nelly, H.4
Mozziconacci, J.5
Koszul, R.6
-
9
-
-
84856747483
-
Three-dimensional folding and functional organization principles of the Drosophila genome
-
9 Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A., Cavalli, G., Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148 (2012), 458–472.
-
(2012)
Cell
, vol.148
, pp. 458-472
-
-
Sexton, T.1
Yaffe, E.2
Kenigsberg, E.3
Bantignies, F.4
Leblanc, B.5
Hoichman, M.6
Parrinello, H.7
Tanay, A.8
Cavalli, G.9
-
10
-
-
84861095603
-
Topological domains in mammalian genomes identified by analysis of chromatin interactions
-
10 Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., Ren, B., Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485 (2012), 376–380.
-
(2012)
Nature
, vol.485
, pp. 376-380
-
-
Dixon, J.R.1
Selvaraj, S.2
Yue, F.3
Kim, A.4
Li, Y.5
Shen, Y.6
Hu, M.7
Liu, J.S.8
Ren, B.9
-
11
-
-
0000703514
-
Repressed and active chromatin isolated from interphase lymphocytes
-
11 Frenster, J.H., Allfrey, V.G., Mirsky, A.E., Repressed and active chromatin isolated from interphase lymphocytes. Proc Natl Acad Sci U S A 50 (1963), 1026–1032.
-
(1963)
Proc Natl Acad Sci U S A
, vol.50
, pp. 1026-1032
-
-
Frenster, J.H.1
Allfrey, V.G.2
Mirsky, A.E.3
-
12
-
-
84943358862
-
Structural and functional diversity of topologically associating domains
-
12 Dekker, J., Heard, E., Structural and functional diversity of topologically associating domains. FEBS Lett 589 (2015), 2877–2884.
-
(2015)
FEBS Lett
, vol.589
, pp. 2877-2884
-
-
Dekker, J.1
Heard, E.2
-
13
-
-
84905593782
-
Enhancer loops appear stable during development and are associated with paused polymerase
-
By focusing on enhancer/promoter contacts during two stages of Drosophila development and two different tissues, the authors observe that promoter/enhancer contacts are mainly unchanged between transcriptionally inactive and active states. This suggests that enhancer/promoter contacts are preformed and structurally organize the genome.
-
13• Ghavi-Helm, Y., Klein, F.A., Pakozdi, T., Ciglar, L., Noordermeer, D., Huber, W., Furlong, E.E., Enhancer loops appear stable during development and are associated with paused polymerase. Nature 512 (2014), 96–100 By focusing on enhancer/promoter contacts during two stages of Drosophila development and two different tissues, the authors observe that promoter/enhancer contacts are mainly unchanged between transcriptionally inactive and active states. This suggests that enhancer/promoter contacts are preformed and structurally organize the genome.
-
(2014)
Nature
, vol.512
, pp. 96-100
-
-
Ghavi-Helm, Y.1
Klein, F.A.2
Pakozdi, T.3
Ciglar, L.4
Noordermeer, D.5
Huber, W.6
Furlong, E.E.7
-
14
-
-
84939246295
-
CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function
-
14 Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D.U., Jung, I., Wu, H., Zhai, Y., Tang, Y., et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162 (2015), 900–910.
-
(2015)
Cell
, vol.162
, pp. 900-910
-
-
Guo, Y.1
Xu, Q.2
Canzio, D.3
Shou, J.4
Li, J.5
Gorkin, D.U.6
Jung, I.7
Wu, H.8
Zhai, Y.9
Tang, Y.10
-
15
-
-
84930091577
-
Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions
-
The authors of this study demonstrate that disruption of a TAD boundary in both mice and humans leads to ectopic contacts between a promoter and an enhancer located in a nearby TAD. This ultimately leads to misregulation of the Epha4 gene and finger malformations.
-
15•• Lupianez, D.G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, H., Opitz, J.M., Laxova, R., et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161 (2015), 1012–1025 The authors of this study demonstrate that disruption of a TAD boundary in both mice and humans leads to ectopic contacts between a promoter and an enhancer located in a nearby TAD. This ultimately leads to misregulation of the Epha4 gene and finger malformations.
-
(2015)
Cell
, vol.161
, pp. 1012-1025
-
-
Lupianez, D.G.1
Kraft, K.2
Heinrich, V.3
Krawitz, P.4
Brancati, F.5
Klopocki, E.6
Horn, D.7
Kayserili, H.8
Opitz, J.M.9
Laxova, R.10
-
16
-
-
84991727599
-
Formation of new chromatin domains determines pathogenicity of genomic duplications
-
16 Franke, M., Ibrahim, D.M., Andrey, G., Schwarzer, W., Heinrich, V., Schopflin, R., Kraft, K., Kempfer, R., Jerkovic, I., Chan, W.L., et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538 (2016), 265–269.
-
(2016)
Nature
, vol.538
, pp. 265-269
-
-
Franke, M.1
Ibrahim, D.M.2
Andrey, G.3
Schwarzer, W.4
Heinrich, V.5
Schopflin, R.6
Kraft, K.7
Kempfer, R.8
Jerkovic, I.9
Chan, W.L.10
-
17
-
-
84923366733
-
Chromatin architecture reorganization during stem cell differentiation
-
This paper describes TAD structures in human ES cells and 4 derived lineages. The TAD structure itself is remarkable stable between cell types, while the contact frequencies inside TADs and between TADs varies, affecting 36% of the genome.
-
17•• Dixon, J.R., Jung, I., Selvaraj, S., Shen, Y., Antosiewicz-Bourget, J.E., Lee, A.Y., Ye, Z., Kim, A., Rajagopal, N., Xie, W., et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518 (2015), 331–336 This paper describes TAD structures in human ES cells and 4 derived lineages. The TAD structure itself is remarkable stable between cell types, while the contact frequencies inside TADs and between TADs varies, affecting 36% of the genome.
-
(2015)
Nature
, vol.518
, pp. 331-336
-
-
Dixon, J.R.1
Jung, I.2
Selvaraj, S.3
Shen, Y.4
Antosiewicz-Bourget, J.E.5
Lee, A.Y.6
Ye, Z.7
Kim, A.8
Rajagopal, N.9
Xie, W.10
-
18
-
-
84911895715
-
Convergent evolution of complex regulatory landscapes and pleiotropy at Hox loci
-
18 Lonfat, N., Montavon, T., Darbellay, F., Gitto, S., Duboule, D., Convergent evolution of complex regulatory landscapes and pleiotropy at Hox loci. Science 346 (2014), 1004–1006.
-
(2014)
Science
, vol.346
, pp. 1004-1006
-
-
Lonfat, N.1
Montavon, T.2
Darbellay, F.3
Gitto, S.4
Duboule, D.5
-
19
-
-
84887620842
-
A high-resolution map of the three-dimensional chromatin interactome in human cells
-
19 Jin, F., Li, Y., Dixon, J.R., Selvaraj, S., Ye, Z., Lee, A.Y., Yen, C.A., Schmitt, A.D., Espinoza, C.A., Ren, B., A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503 (2013), 290–294.
-
(2013)
Nature
, vol.503
, pp. 290-294
-
-
Jin, F.1
Li, Y.2
Dixon, J.R.3
Selvaraj, S.4
Ye, Z.5
Lee, A.Y.6
Yen, C.A.7
Schmitt, A.D.8
Espinoza, C.A.9
Ren, B.10
-
20
-
-
84907512608
-
Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation
-
20 Le Dily, F., Bau, D., Pohl, A., Vicent, G.P., Serra, F., Soronellas, D., Castellano, G., Wright, R.H., Ballare, C., Filion, G., et al. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev 28 (2014), 2151–2162.
-
(2014)
Genes Dev
, vol.28
, pp. 2151-2162
-
-
Le Dily, F.1
Bau, D.2
Pohl, A.3
Vicent, G.P.4
Serra, F.5
Soronellas, D.6
Castellano, G.7
Wright, R.H.8
Ballare, C.9
Filion, G.10
-
21
-
-
84867842663
-
A predictive computational model of the dynamic 3D interphase yeast nucleus
-
21 Wong, H., Marie-Nelly, H., Herbert, S., Carrivain, P., Blanc, H., Koszul, R., Fabre, E., Zimmer, C., A predictive computational model of the dynamic 3D interphase yeast nucleus. Curr Biol 22 (2012), 1881–1890.
-
(2012)
Curr Biol
, vol.22
, pp. 1881-1890
-
-
Wong, H.1
Marie-Nelly, H.2
Herbert, S.3
Carrivain, P.4
Blanc, H.5
Koszul, R.6
Fabre, E.7
Zimmer, C.8
-
22
-
-
84880983596
-
The genome folding mechanism in yeast
-
22 Kimura, H., Shimooka, Y., Nishikawa, J.-i., Miura, O., Sugiyama, S., Yamada, S., Ohyama, T., The genome folding mechanism in yeast. J Biochem 154 (2013), 137–147.
-
(2013)
J Biochem
, vol.154
, pp. 137-147
-
-
Kimura, H.1
Shimooka, Y.2
Nishikawa, J.-I.3
Miura, O.4
Sugiyama, S.5
Yamada, S.6
Ohyama, T.7
-
23
-
-
84904260664
-
Effect of chromosome tethering on nuclear organization in yeast
-
23 Avşaroğlu Bi, Bronk, G., Gordon-Messer, S., Ham, J., Bressan, D.A., Haber, J.E., Kondev, J., Effect of chromosome tethering on nuclear organization in yeast. PLoS One, 9, 2014, e102474.
-
(2014)
PLoS One
, vol.9
, pp. e102474
-
-
Avşaroğlu Bi1
Bronk, G.2
Gordon-Messer, S.3
Ham, J.4
Bressan, D.A.5
Haber, J.E.6
Kondev, J.7
-
24
-
-
50949125193
-
Structure and dynamics of interphase chromosomes
-
24 Rosa, A., Everaers, R., Structure and dynamics of interphase chromosomes. PLoS Comput Biol, 4, 2008, e1000153.
-
(2008)
PLoS Comput Biol
, vol.4
, pp. e1000153
-
-
Rosa, A.1
Everaers, R.2
-
25
-
-
77957867310
-
Diffusion-driven looping provides a consistent framework for chromatin organization
-
25 Bohn, M., Heermann, D.W., Diffusion-driven looping provides a consistent framework for chromatin organization. PLoS One, 5, 2010, e12218.
-
(2010)
PLoS One
, vol.5
, pp. e12218
-
-
Bohn, M.1
Heermann, D.W.2
-
26
-
-
84893398836
-
From a melt of rings to chromosome territories: the role of topological constraints in genome folding
-
26 Halverson, J.D., Smrek, J., Kremer, K., Grosberg, A.Y., From a melt of rings to chromosome territories: the role of topological constraints in genome folding. Rep Prog Phys, 77, 2014, 022601.
-
(2014)
Rep Prog Phys
, vol.77
, pp. 022601
-
-
Halverson, J.D.1
Smrek, J.2
Kremer, K.3
Grosberg, A.Y.4
-
27
-
-
84905587531
-
Spatial confinement is a major determinant of the folding landscape of human chromosomes
-
27 Gürsoy, G., Xu, Y., Kenter, A.L., Liang, J., Spatial confinement is a major determinant of the folding landscape of human chromosomes. Nucleic Acids Res 42 (2014), 8223–8230.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 8223-8230
-
-
Gürsoy, G.1
Xu, Y.2
Kenter, A.L.3
Liang, J.4
-
28
-
-
84956136196
-
The crumpled globule model of the three-dimensional structure of DNA
-
28 Grosberg, A., Rabin, Y., Halvin, S., Neer, A., The crumpled globule model of the three-dimensional structure of DNA. Eur Phys Lett, 23, 1993, 373.
-
(1993)
Eur Phys Lett
, vol.23
, pp. 373
-
-
Grosberg, A.1
Rabin, Y.2
Halvin, S.3
Neer, A.4
-
29
-
-
79952279926
-
The fractal globule as a model of chromatin architecture in the cell
-
29 Mirny, L.A., The fractal globule as a model of chromatin architecture in the cell. Chromosome Res 19 (2011), 37–51.
-
(2011)
Chromosome Res
, vol.19
, pp. 37-51
-
-
Mirny, L.A.1
-
30
-
-
84907420615
-
Comparative analysis of metazoan chromatin organization
-
30 Ho, J.W., Jung, Y.L., Liu, T., Alver, B.H., Lee, S., Ikegami, K., Sohn, K.A., Minoda, A., Tolstorukov, M.Y., Appert, A., et al. Comparative analysis of metazoan chromatin organization. Nature 512 (2014), 449–452.
-
(2014)
Nature
, vol.512
, pp. 449-452
-
-
Ho, J.W.1
Jung, Y.L.2
Liu, T.3
Alver, B.H.4
Lee, S.5
Ikegami, K.6
Sohn, K.A.7
Minoda, A.8
Tolstorukov, M.Y.9
Appert, A.10
-
31
-
-
84960877099
-
Constructing 3D interaction maps from 1D epigenomes
-
31 Zhu, Y., Chen, Z., Zhang, K., Wang, M., Medovoy, D., Whitaker, J.W., Ding, B., Li, N., Zheng, L., Wang, W., Constructing 3D interaction maps from 1D epigenomes. Nat Commun, 7, 2016, 10812.
-
(2016)
Nat Commun
, vol.7
, pp. 10812
-
-
Zhu, Y.1
Chen, Z.2
Zhang, K.3
Wang, M.4
Medovoy, D.5
Whitaker, J.W.6
Ding, B.7
Li, N.8
Zheng, L.9
Wang, W.10
-
32
-
-
84956604089
-
Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation
-
32 Fraser, J., Ferrai, C., Chiariello, A.M., Schueler, M., Rito, T., Laudanno, G., Barbieri, M., Moore, B.L., Kraemer, D.C., Aitken, S., et al. Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation. Mol Syst Biol, 11, 2015, 852.
-
(2015)
Mol Syst Biol
, vol.11
, pp. 852
-
-
Fraser, J.1
Ferrai, C.2
Chiariello, A.M.3
Schueler, M.4
Rito, T.5
Laudanno, G.6
Barbieri, M.7
Moore, B.L.8
Kraemer, D.C.9
Aitken, S.10
-
33
-
-
84867070913
-
Complexity of chromatin folding is captured by the strings and binders switch model
-
33 Barbieri, M., Chotalia, M., Fraser, J., Lavitas, L.-M., Dostie, J., Pombo, A., Nicodemi, M., Complexity of chromatin folding is captured by the strings and binders switch model. Proc Natl Acad Sci U S A 109 (2012), 16173–16178.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 16173-16178
-
-
Barbieri, M.1
Chotalia, M.2
Fraser, J.3
Lavitas, L.-M.4
Dostie, J.5
Pombo, A.6
Nicodemi, M.7
-
34
-
-
84966297463
-
Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains
-
34 Brackley, C.A., Johnson, J., Kelly, S., Cook, P.R., Marenduzzo, D., Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains. Nucleic Acids Res 44 (2016), 3503–3512.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 3503-3512
-
-
Brackley, C.A.1
Johnson, J.2
Kelly, S.3
Cook, P.R.4
Marenduzzo, D.5
-
35
-
-
84861389548
-
Expression-dependent folding of interphase chromatin
-
35 Jerabek, H., Heermann, D.W., Expression-dependent folding of interphase chromatin. PLoS One, 7, 2012, e37525.
-
(2012)
PLoS One
, vol.7
, pp. e37525
-
-
Jerabek, H.1
Heermann, D.W.2
-
36
-
-
84898015781
-
Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes
-
36 Benedetti, F., Dorier, J., Burnier, Y., Stasiak, A., Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes. Nucleic Acids Res 42 (2014), 2848–2855.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 2848-2855
-
-
Benedetti, F.1
Dorier, J.2
Burnier, Y.3
Stasiak, A.4
-
37
-
-
84908333387
-
Chromatin loops as allosteric modulators of enhancer-promoter interactions
-
37 Doyle, B., Fudenberg, G., Imakaev, M., Mirny, L.A., Chromatin loops as allosteric modulators of enhancer-promoter interactions. PLoS Comput Biol, 10, 2014, e1003867.
-
(2014)
PLoS Comput Biol
, vol.10
, pp. e1003867
-
-
Doyle, B.1
Fudenberg, G.2
Imakaev, M.3
Mirny, L.A.4
-
38
-
-
84899019595
-
Chromosome positioning from activity-based segregation
-
38 Ganai, N., Sengupta, S., Menon, G.I., Chromosome positioning from activity-based segregation. Nucleic Acids Res 42 (2014), 4145–4159.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 4145-4159
-
-
Ganai, N.1
Sengupta, S.2
Menon, G.I.3
-
39
-
-
84924870007
-
Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains
-
A heteropolymer model is introduced which suggests that epigenomic-driven interactions might be an important driver of chromosome folding at megabase scales. In agreement with experimental data, the model predicts that TAD formation is fast and results from the internal collapse of epigenomic domain and that inter-TAD interactions are dynamic and emerge at longer time-scales.
-
39•• Jost, D., Carrivain, P., Cavalli, G., Vaillant, C., Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res 42 (2014), 9553–9561 A heteropolymer model is introduced which suggests that epigenomic-driven interactions might be an important driver of chromosome folding at megabase scales. In agreement with experimental data, the model predicts that TAD formation is fast and results from the internal collapse of epigenomic domain and that inter-TAD interactions are dynamic and emerge at longer time-scales.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 9553-9561
-
-
Jost, D.1
Carrivain, P.2
Cavalli, G.3
Vaillant, C.4
-
40
-
-
84908352990
-
Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling
-
40 Tark-Dame, M., Jerabek, H., Manders, E.M.M., Heermann, D.W., van Driel, R., Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling. PLoS Comput Biol, 10, 2014, e1003877.
-
(2014)
PLoS Comput Biol
, vol.10
, pp. e1003877
-
-
Tark-Dame, M.1
Jerabek, H.2
Manders, E.M.M.3
Heermann, D.W.4
van Driel, R.5
-
41
-
-
84921529141
-
A statistical model of intra-chromosome contact maps
-
41 Nazarov, L.I., Tamm, M.V., Avetosov, V.A., Nechaev, S.K., A statistical model of intra-chromosome contact maps. Soft Matter 11 (2015), 1019–1025.
-
(2015)
Soft Matter
, vol.11
, pp. 1019-1025
-
-
Nazarov, L.I.1
Tamm, M.V.2
Avetosov, V.A.3
Nechaev, S.K.4
-
42
-
-
84948403758
-
Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes
-
A polymer model for chromatin extrusion is introduced and shown to agree quantitatively with experimental data. The role of oriented CTCF sites is explored experimentally, showing that the model is able to predict the effect of CTCF site inversions or deletions.
-
42•• Sanborn, A.L., Rao, S.S., Huang, S.C., Durand, N.C., Huntley, M.H., Jewett, A.I., Bochkov, I.D., Chinnappan, D., Cutkosky, A., Li, J., et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A 112 (2015), E6456–E6465 A polymer model for chromatin extrusion is introduced and shown to agree quantitatively with experimental data. The role of oriented CTCF sites is explored experimentally, showing that the model is able to predict the effect of CTCF site inversions or deletions.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. E6456-E6465
-
-
Sanborn, A.L.1
Rao, S.S.2
Huang, S.C.3
Durand, N.C.4
Huntley, M.H.5
Jewett, A.I.6
Bochkov, I.D.7
Chinnappan, D.8
Cutkosky, A.9
Li, J.10
-
43
-
-
84956674594
-
Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains
-
43 Ulianov, S.V., Khrameeva, E.E., Gavrilov, A.A., Flyamer, I.M., Kos, P., Mikhaleva, E.A., Penin, A.A., Logacheva, M.D., Imakaev, M.V., Chertovich, A., et al. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res 26 (2016), 70–84.
-
(2016)
Genome Res
, vol.26
, pp. 70-84
-
-
Ulianov, S.V.1
Khrameeva, E.E.2
Gavrilov, A.A.3
Flyamer, I.M.4
Kos, P.5
Mikhaleva, E.A.6
Penin, A.A.7
Logacheva, M.D.8
Imakaev, M.V.9
Chertovich, A.10
-
44
-
-
84971324235
-
Formation of chromosomal domains by loop extrusion
-
This paper introduces a rigorous analysis of the loop extrusion model and the role of boundary elements [note that preprint publication of this work was first released in bioRxiv in August 2015]. Compared to other possible models, the loop extrusion model is shown to fit the data best. Polymer simulations and genomic data are used to identify the functional role of CTCF and cohesin.
-
44•• Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N., Mirny, L.A., Formation of chromosomal domains by loop extrusion. Cell Rep 15 (2016), 2038–2049 This paper introduces a rigorous analysis of the loop extrusion model and the role of boundary elements [note that preprint publication of this work was first released in bioRxiv in August 2015]. Compared to other possible models, the loop extrusion model is shown to fit the data best. Polymer simulations and genomic data are used to identify the functional role of CTCF and cohesin.
-
(2016)
Cell Rep
, vol.15
, pp. 2038-2049
-
-
Fudenberg, G.1
Imakaev, M.2
Lu, C.3
Goloborodko, A.4
Abdennur, N.5
Mirny, L.A.6
-
45
-
-
84964370167
-
Structural fluctuations of the chromatin fiber within topologically associating domains
-
45 Tiana, G., Amitai, A., Pollex, T., Piolot, T., Holcman, D., Heard, E., Giorgetti, L., Structural fluctuations of the chromatin fiber within topologically associating domains. Biophys J 110 (2016), 1234–1245.
-
(2016)
Biophys J
, vol.110
, pp. 1234-1245
-
-
Tiana, G.1
Amitai, A.2
Pollex, T.3
Piolot, T.4
Holcman, D.5
Heard, E.6
Giorgetti, L.7
-
46
-
-
84900297485
-
Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription
-
46 Giorgetti, L., Galupa, R., Nora, E.P., Piolot, T., Lam, F., Dekker, J., Tiana, G., Heard, E., Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157 (2014), 950–963.
-
(2014)
Cell
, vol.157
, pp. 950-963
-
-
Giorgetti, L.1
Galupa, R.2
Nora, E.P.3
Piolot, T.4
Lam, F.5
Dekker, J.6
Tiana, G.7
Heard, E.8
-
47
-
-
84969963392
-
The folding landscape of the epigenome
-
47 Olarte-Plata, J.D., Haddad, N., Vaillant, C., Jost, D., The folding landscape of the epigenome. Phys Biol, 13, 2016, 026001.
-
(2016)
Phys Biol
, vol.13
, pp. 026001
-
-
Olarte-Plata, J.D.1
Haddad, N.2
Vaillant, C.3
Jost, D.4
-
48
-
-
85018195648
-
Chromatin epigenomic domain folding: size matters
-
48 Care, B.R., Emeriau, P.-E., Cortini, R., Victor, J.-M., Chromatin epigenomic domain folding: size matters. AIMS Biophys 2 (2015), 517–530.
-
(2015)
AIMS Biophys
, vol.2
, pp. 517-530
-
-
Care, B.R.1
Emeriau, P.-E.2
Cortini, R.3
Victor, J.-M.4
-
49
-
-
84876285368
-
A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly
-
49 Canzio, D., Liao, M., Naber, N., Pate, E., Larson, A., Wu, S., Marina, D.B., Garcia, J.F., Madhani, H.D., Cooke, R., et al. A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly. Nature 496 (2013), 377–381.
-
(2013)
Nature
, vol.496
, pp. 377-381
-
-
Canzio, D.1
Liao, M.2
Naber, N.3
Pate, E.4
Larson, A.5
Wu, S.6
Marina, D.B.7
Garcia, J.F.8
Madhani, H.D.9
Cooke, R.10
-
50
-
-
84884725454
-
SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing
-
50 Isono, K., Endo, T.A., Ku, M., Yamada, D., Suzuki, R., Sharif, J., Ishikura, T., Toyoda, T., Bernstein, B.E., Koseki, H., SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing. Dev Cell 26 (2013), 565–577.
-
(2013)
Dev Cell
, vol.26
, pp. 565-577
-
-
Isono, K.1
Endo, T.A.2
Ku, M.3
Yamada, D.4
Suzuki, R.5
Sharif, J.6
Ishikura, T.7
Toyoda, T.8
Bernstein, B.E.9
Koseki, H.10
-
51
-
-
84973369696
-
Dynamic and flexible H3K9me3 bridging via HP1β dimerization establishes a plastic state of condensed chromatin
-
51 Hiragami-Hamada, K., Soeroes, S., Nikolov, M., Wilkins, B., Kreuz, S., Chen, C., De La Rosa-Velázquez, I.A., Zenn, H.M., Kost, N., Pohl, W., et al. Dynamic and flexible H3K9me3 bridging via HP1β dimerization establishes a plastic state of condensed chromatin. Nat Commun, 7, 2016, 11310.
-
(2016)
Nat Commun
, vol.7
, pp. 11310
-
-
Hiragami-Hamada, K.1
Soeroes, S.2
Nikolov, M.3
Wilkins, B.4
Kreuz, S.5
Chen, C.6
De La Rosa-Velázquez, I.A.7
Zenn, H.M.8
Kost, N.9
Pohl, W.10
-
52
-
-
84955121651
-
Chromatin topology is coupled to Polycomb group protein subnuclear organization
-
This study makes use of a polymer model using interacting binders, first introduced by Barbieri et al. [33], to mechanistically dissect the formation of Polycomb bodies in flies. Results are then compared to in vivo superresolution microscopy data.
-
52• Wani, A.H., Boettiger, A.N., Schorderet, P., Ergun, A., Münger, C., Sadreyev, R.I., Zhuang, X., Kingston, R.E., Francis, N.J., Chromatin topology is coupled to Polycomb group protein subnuclear organization. Nat Commun, 7, 2016, 10291 This study makes use of a polymer model using interacting binders, first introduced by Barbieri et al. [33], to mechanistically dissect the formation of Polycomb bodies in flies. Results are then compared to in vivo superresolution microscopy data.
-
(2016)
Nat Commun
, vol.7
, pp. 10291
-
-
Wani, A.H.1
Boettiger, A.N.2
Schorderet, P.3
Ergun, A.4
Münger, C.5
Sadreyev, R.I.6
Zhuang, X.7
Kingston, R.E.8
Francis, N.J.9
-
53
-
-
85015349564
-
Predicting the three-dimensional folding of cis-regulatory regions in mammalian genomes using bioinformatic data and polymer models
-
53 Brackley, C.A., Brown, J.M., Waithe, D., Babbs, C., Davies, J., Hughes, J.R., Buckle, V.J., Marenduzzo, D., Predicting the three-dimensional folding of cis-regulatory regions in mammalian genomes using bioinformatic data and polymer models. Genome Biol, 17, 2016, 59.
-
(2016)
Genome Biol
, vol.17
, pp. 59
-
-
Brackley, C.A.1
Brown, J.M.2
Waithe, D.3
Babbs, C.4
Davies, J.5
Hughes, J.R.6
Buckle, V.J.7
Marenduzzo, D.8
-
54
-
-
84888018217
-
Organization of the mitotic chromosome
-
54 Naumova, N., Imakaev, M., Fudenberg, G., Zhan, Y., Lajoie, B.R., Mirny, L.A., Dekker, J., Organization of the mitotic chromosome. Science 342 (2013), 948–953.
-
(2013)
Science
, vol.342
, pp. 948-953
-
-
Naumova, N.1
Imakaev, M.2
Fudenberg, G.3
Zhan, Y.4
Lajoie, B.R.5
Mirny, L.A.6
Dekker, J.7
-
55
-
-
84885617426
-
Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
-
55 Nagano, T., Lubling, Y., Stevens, T.J., Schoenfelder, S., Yaffe, E., Dean, W., Laue, E.D., Tanay, A., Fraser, P., Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502 (2013), 59–64.
-
(2013)
Nature
, vol.502
, pp. 59-64
-
-
Nagano, T.1
Lubling, Y.2
Stevens, T.J.3
Schoenfelder, S.4
Yaffe, E.5
Dean, W.6
Laue, E.D.7
Tanay, A.8
Fraser, P.9
-
56
-
-
84924533047
-
Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture
-
56 Vietri Rudan, M., Barrington, C., Henderson, S., Ernst, C., Odom, D.T., Tanay, A., Hadjur, S., Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep 10 (2015), 1297–1309.
-
(2015)
Cell Rep
, vol.10
, pp. 1297-1309
-
-
Vietri Rudan, M.1
Barrington, C.2
Henderson, S.3
Ernst, C.4
Odom, D.T.5
Tanay, A.6
Hadjur, S.7
-
57
-
-
84916880365
-
Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes
-
From a genome-wide SMC1 ChIA-PET experiment performed in murine ESC, the authors identify for the first time cohesin-mediated, TAD-like interaction domains with CTCF-enriched boundaries. By specific deletion of these boundaries they show how these domains, by constituting structural “insulated neighborhood” may contribute to the control of the superenhancer-mediated activity of pluripotent genes as well as the PcG-repression of lineage-specific genes.
-
57•• Dowen, J.M., Fan, Z.P., Hnisz, D., Ren, G., Abraham, B.J., Zhang, L.N., Weintraub, A.S., Schuijers, J., Lee, T.I., Zhao, K., et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159 (2014), 374–387 From a genome-wide SMC1 ChIA-PET experiment performed in murine ESC, the authors identify for the first time cohesin-mediated, TAD-like interaction domains with CTCF-enriched boundaries. By specific deletion of these boundaries they show how these domains, by constituting structural “insulated neighborhood” may contribute to the control of the superenhancer-mediated activity of pluripotent genes as well as the PcG-repression of lineage-specific genes.
-
(2014)
Cell
, vol.159
, pp. 374-387
-
-
Dowen, J.M.1
Fan, Z.P.2
Hnisz, D.3
Ren, G.4
Abraham, B.J.5
Zhang, L.N.6
Weintraub, A.S.7
Schuijers, J.8
Lee, T.I.9
Zhao, K.10
-
58
-
-
0035678054
-
Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis
-
58 Nasmyth, K., Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35 (2001), 673–745.
-
(2001)
Annu Rev Genet
, vol.35
, pp. 673-745
-
-
Nasmyth, K.1
-
59
-
-
84871208196
-
Self-organization of domain structures by DNA-loop-extruding enzymes
-
59 Alipour, E., Marko, J.F., Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res 40 (2012), 11202–11212.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 11202-11212
-
-
Alipour, E.1
Marko, J.F.2
-
60
-
-
84936945257
-
Condensin-driven remodelling of X chromosome topology during dosage compensation
-
60 Crane, E., Bian, Q., McCord, R.P., Lajoie, B.R., Wheeler, B.S., Ralston, E.J., Uzawa, S., Dekker, J., Meyer, B.J., Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523 (2015), 240–244.
-
(2015)
Nature
, vol.523
, pp. 240-244
-
-
Crane, E.1
Bian, Q.2
McCord, R.P.3
Lajoie, B.R.4
Wheeler, B.S.5
Ralston, E.J.6
Uzawa, S.7
Dekker, J.8
Meyer, B.J.9
-
61
-
-
84971209770
-
Compaction and segregation of sister chromatids via active loop extrusion
-
61 Goloborodko, A., Imakaev, M.V., Marko, J.F., Mirny, L., Compaction and segregation of sister chromatids via active loop extrusion. Elife, 2016, 5.
-
(2016)
Elife
, pp. 5
-
-
Goloborodko, A.1
Imakaev, M.V.2
Marko, J.F.3
Mirny, L.4
-
62
-
-
84969756512
-
Chromosome compaction by active loop extrusion
-
62 Goloborodko, A., Marko, J.F., Mirny, L.A., Chromosome compaction by active loop extrusion. Biophys J 110 (2016), 2162–2168.
-
(2016)
Biophys J
, vol.110
, pp. 2162-2168
-
-
Goloborodko, A.1
Marko, J.F.2
Mirny, L.A.3
-
63
-
-
0042622638
-
DNA looping and physical constraints on transcription regulation
-
63 Vilar, J.M., Leibler, S., DNA looping and physical constraints on transcription regulation. J Mol Biol 331 (2003), 981–989.
-
(2003)
J Mol Biol
, vol.331
, pp. 981-989
-
-
Vilar, J.M.1
Leibler, S.2
-
64
-
-
32644439362
-
Induction of the lac promoter in the absence of DNA loops and the stoichiometry of induction
-
64 Oehler, S., Alberti, S., Muller-Hill, B., Induction of the lac promoter in the absence of DNA loops and the stoichiometry of induction. Nucleic Acids Res 34 (2006), 606–612.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 606-612
-
-
Oehler, S.1
Alberti, S.2
Muller-Hill, B.3
-
65
-
-
0028365289
-
Quality and position of the three lac operators of E. coli define efficiency of repression
-
65 Oehler, S., Amouyal, M., Kolkhof, P., von Wilcken-Bergmann, B., Muller-Hill, B., Quality and position of the three lac operators of E. coli define efficiency of repression. EMBO J 13 (1994), 3348–3355.
-
(1994)
EMBO J
, vol.13
, pp. 3348-3355
-
-
Oehler, S.1
Amouyal, M.2
Kolkhof, P.3
von Wilcken-Bergmann, B.4
Muller-Hill, B.5
-
66
-
-
33744807717
-
DNA looping: the consequences and its control
-
66 Saiz, L., Vilar, J.M., DNA looping: the consequences and its control. Curr Opin Struct Biol 16 (2006), 344–350.
-
(2006)
Curr Opin Struct Biol
, vol.16
, pp. 344-350
-
-
Saiz, L.1
Vilar, J.M.2
-
67
-
-
84879218169
-
Systems biophysics of gene expression
-
67 Vilar, J.M., Saiz, L., Systems biophysics of gene expression. Biophys J 104 (2013), 2574–2585.
-
(2013)
Biophys J
, vol.104
, pp. 2574-2585
-
-
Vilar, J.M.1
Saiz, L.2
-
68
-
-
84981331875
-
Gene regulation at a distance: from remote enhancers to 3D regulatory ensembles
-
68 Spitz, F., Gene regulation at a distance: from remote enhancers to 3D regulatory ensembles. Semin Cell Dev Biol 57 (2016), 57–67.
-
(2016)
Semin Cell Dev Biol
, vol.57
, pp. 57-67
-
-
Spitz, F.1
-
69
-
-
34247557054
-
The function of the epigenome in cell reprogramming
-
69 Lanzuolo, C., Orlando, V., The function of the epigenome in cell reprogramming. Cell Mol Life Sci 64 (2007), 1043–1062.
-
(2007)
Cell Mol Life Sci
, vol.64
, pp. 1043-1062
-
-
Lanzuolo, C.1
Orlando, V.2
-
70
-
-
78651514974
-
Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila
-
70 Bantignies, F., Roure, V., Comet, I., Leblanc, B., Schuettengruber, B., Bonnet, J., Tixier, V., Mas, A., Cavalli, G., Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144 (2011), 214–226.
-
(2011)
Cell
, vol.144
, pp. 214-226
-
-
Bantignies, F.1
Roure, V.2
Comet, I.3
Leblanc, B.4
Schuettengruber, B.5
Bonnet, J.6
Tixier, V.7
Mas, A.8
Cavalli, G.9
-
71
-
-
84960968969
-
From single genes to entire genomes: the search for a function of nuclear organization
-
71 Pueschel, R., Coraggio, F., Meister, P., From single genes to entire genomes: the search for a function of nuclear organization. Development 143 (2016), 910–923.
-
(2016)
Development
, vol.143
, pp. 910-923
-
-
Pueschel, R.1
Coraggio, F.2
Meister, P.3
-
72
-
-
78751590899
-
Silencing chromatin: comparing modes and mechanisms
-
72 Beisel, C., Paro, R., Silencing chromatin: comparing modes and mechanisms. Nat Rev Genet 12 (2011), 123–135.
-
(2011)
Nat Rev Genet
, vol.12
, pp. 123-135
-
-
Beisel, C.1
Paro, R.2
-
73
-
-
84946012534
-
The interplay of histone modifications - writers that read
-
73 Zhang, T., Cooper, S., Brockdorff, N., The interplay of histone modifications - writers that read. EMBO Rep 16 (2015), 1467–1481.
-
(2015)
EMBO Rep
, vol.16
, pp. 1467-1481
-
-
Zhang, T.1
Cooper, S.2
Brockdorff, N.3
-
74
-
-
84892814234
-
Chromatin modifiers and remodellers: regulators of cellular differentiation
-
74 Chen, T., Dent, S.Y., Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet 15 (2014), 93–106.
-
(2014)
Nat Rev Genet
, vol.15
, pp. 93-106
-
-
Chen, T.1
Dent, S.Y.2
-
75
-
-
84968761461
-
Nucleation and spreading of a heterochromatic domain in fission yeast
-
75 Obersriebnig, M.J., Pallesen, E.M., Sneppen, K., Trusina, A., Thon, G., Nucleation and spreading of a heterochromatic domain in fission yeast. Nat Commun, 7, 2016, 11518.
-
(2016)
Nat Commun
, vol.7
, pp. 11518
-
-
Obersriebnig, M.J.1
Pallesen, E.M.2
Sneppen, K.3
Trusina, A.4
Thon, G.5
-
76
-
-
79961172475
-
A polycomb-based switch underlying quantitative epigenetic memory
-
76 Angel, A., Song, J., Dean, C., Howard, M., A polycomb-based switch underlying quantitative epigenetic memory. Nature 476 (2011), 105–108.
-
(2011)
Nature
, vol.476
, pp. 105-108
-
-
Angel, A.1
Song, J.2
Dean, C.3
Howard, M.4
-
77
-
-
34249080596
-
Theoretical analysis of epigenetic cell memory by nucleosome modification
-
77 Dodd, I.B., Micheelsen, M.A., Sneppen, K., Thon, G., Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell 129 (2007), 813–822.
-
(2007)
Cell
, vol.129
, pp. 813-822
-
-
Dodd, I.B.1
Micheelsen, M.A.2
Sneppen, K.3
Thon, G.4
-
78
-
-
84894572156
-
Bifurcation in epigenetics: implications in development, proliferation, and diseases
-
78 Jost, D., Bifurcation in epigenetics: implications in development, proliferation, and diseases. Phys Rev E Stat Nonlin Soft Matter Phys, 89, 2014, 010701.
-
(2014)
Phys Rev E Stat Nonlin Soft Matter Phys
, vol.89
, pp. 010701
-
-
Jost, D.1
-
79
-
-
84971383942
-
Greater than the sum of parts: complexity of the dynamic epigenome
-
79 Soshnev, A.A., Josefowicz, S.Z., Allis, C.D., Greater than the sum of parts: complexity of the dynamic epigenome. Mol Cell 62 (2016), 681–694.
-
(2016)
Mol Cell
, vol.62
, pp. 681-694
-
-
Soshnev, A.A.1
Josefowicz, S.Z.2
Allis, C.D.3
-
80
-
-
84876871047
-
Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put
-
80 Simon, J.A., Kingston, R.E., Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 49 (2013), 808–824.
-
(2013)
Mol Cell
, vol.49
, pp. 808-824
-
-
Simon, J.A.1
Kingston, R.E.2
|