메뉴 건너뛰기




Volumn 2016-October, Issue , 2016, Pages 9-15

A method for automatic adjustment of ensemble size in stream data mining

Author keywords

[No Author keywords available]

Indexed keywords

DATA COMMUNICATION SYSTEMS;

EID: 85007236700     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2016.7727174     Document Type: Conference Paper
Times cited : (21)

References (32)
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging Predictors, Machine Learning, Vol. 24, No. 2, pp. 123-140, 1996
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 84893811951 scopus 로고    scopus 로고
    • Combining block-based and online methods in learning ensembles from concept drifting data streams
    • D. Brzeziński, J. Stefanowski, Combining Block-based and Online Methods in Learning Ensembles from Concept Drifting Data Streams, Information Sciences, Vo. 265, pp. 50-67, 2014
    • (2014) Information Sciences , vol.265 , pp. 50-67
    • Brzeziński, D.1    Stefanowski, J.2
  • 8
    • 84941559528 scopus 로고    scopus 로고
    • Diversity techniques improve the performance of the best imbalance learning ensembles
    • J. F. Diez-Pastor, J. J. Rodrguez, C. Garca-Osorio, L. I. Kuncheva, Diversity techniques improve the performance of the best imbalance learning ensembles, Information Sciences, Vol. 325, pp. 98-117, 2015
    • (2015) Information Sciences , vol.325 , pp. 98-117
    • Diez-Pastor, J.F.1    Rodrguez, J.J.2    Garca-Osorio, C.3    Kuncheva, L.I.4
  • 10
    • 52149113492 scopus 로고    scopus 로고
    • Mining high-speed data streams
    • ACM Press, New York, NY, USA
    • P. Domingos, G. Hulten, Mining high-speed data streams, Proceedings KDD 2000, ACM Press, New York, NY, USA, pp. 7180, 2000
    • (2000) Proceedings KDD 2000 , pp. 7180
    • Domingos, P.1    Hulten, G.2
  • 12
    • 80053634784 scopus 로고    scopus 로고
    • Incremental learning of concept drift in nonstationary environments
    • R. Elwell, R. Polikar, Incremental Learning of Concept Drift in Nonstationary Environments, IEEE Transactions on Neural Networks, Vol. 22, No. 10, pp. 1517-1531, 2011
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.10 , pp. 1517-1531
    • Elwell, R.1    Polikar, R.2
  • 14
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund, R. E. Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences, Vol. 55, No. 1, pp. 119-139, 1997
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 15
    • 84884203574 scopus 로고    scopus 로고
    • Ensemble of online neural networks for non-stationary and imbalanced data streams
    • December
    • A. Ghazikhani, R. Monsefi, H. S. Yazdi, Ensemble of online neural networks for non-stationary and imbalanced data streams, Neurocomputing, Vol. 122, pp. 535-544, December 2013
    • (2013) Neurocomputing , vol.122 , pp. 535-544
    • Ghazikhani, A.1    Monsefi, R.2    Yazdi, H.S.3
  • 17
    • 85014334043 scopus 로고    scopus 로고
    • SVM based feature extraction for novel class detection from streaming data
    • Jan.
    • A. Kale, M. D. Ingle, SVM based Feature Extraction for Novel Class Detection from Streaming Data, International Journal of Computer Applications, Vol. 110, No. 9, pp. 1-3, Jan. 2015
    • (2015) International Journal of Computer Applications , vol.110 , Issue.9 , pp. 1-3
    • Kale, A.1    Ingle, M.D.2
  • 19
    • 84931090810 scopus 로고    scopus 로고
    • Learning concept-drifting data streams with random ensemble decision trees
    • P. Li, X. Wu, X. Hu, H. Wang, Learning concept-drifting data streams with random ensemble decision trees, Neurocomputing, Vol. 166, pp. 68-83, 2015
    • (2015) Neurocomputing , vol.166 , pp. 68-83
    • Li, P.1    Wu, X.2    Hu, X.3    Wang, H.4
  • 20
    • 84959551434 scopus 로고    scopus 로고
    • Data stream classification for structural health monitoring via on-line support vector machines, big data computing service and applications (BigDataService)
    • March 30, April 2 2015
    • X. Li, W. Yu, Data Stream Classification for Structural Health Monitoring via On-Line Support Vector Machines, Big Data Computing Service and Applications (BigDataService), 2015 IEEE First International Conference on, vol., no., pp. 400-405, March 30 2015-April 2 2015
    • (2015) 2015 IEEE First International Conference on , pp. 400-405
    • Li, X.1    Yu, W.2
  • 24
  • 31
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • ACM Press
    • H. Wang et al., Mining Concept-Drifting Data Streams Using Ensemble Classifiers, Proc. Conf. Knowledge Discovery in Data (KDD 03), ACM Press, pp. 226-235, 2003
    • (2003) Proc. Conf. Knowledge Discovery in Data (KDD 03) , pp. 226-235
    • Wang, H.1
  • 32
    • 84929955922 scopus 로고    scopus 로고
    • DE2: Dynamic ensemble of ensembles for learning nonstationary data
    • X.-C. Yin, K. Huang, H.-W. Hao, DE2: Dynamic ensemble of ensembles for learning nonstationary data, Neurocomputing, Vol. 165, pp. 14-22, 2015
    • (2015) Neurocomputing , vol.165 , pp. 14-22
    • Yin, X.-C.1    Huang, K.2    Hao, H.-W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.