-
1
-
-
0010012318
-
Incremental Learning from Noisy Data
-
Schlimmer, J. C. and Granger, R. H.; Incremental Learning from Noisy Data. Machine Learning 1 (1986) 317-354.
-
(1986)
Machine Learning
, vol.1
, pp. 317-354
-
-
Schlimmer, J.C.1
Granger, R.H.2
-
2
-
-
0002896413
-
Tracking drifting concepts by minimizing disagreements
-
Helmbold, D. P. and Long, P. M.; Tracking drifting concepts by minimizing disagreements. Machine Learning 14 (1994) 27-45.
-
(1994)
Machine Learning
, vol.14
, pp. 27-45
-
-
Helmbold, D.P.1
Long, P.M.2
-
3
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
Widmer, G. and Kubat, M.; Learning in the presence of concept drift and hidden contexts. Machine Learning 23 (1996) 69-101.
-
(1996)
Machine Learning
, vol.23
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
-
4
-
-
0035904595
-
Predictive learning models for concept drift
-
Case, J., Jain, S., Kaufmann, S., Sharma, A., and Stephan, F.; Predictive learning models for concept drift. Theoretical Computer Science 268 (2001) 323-349.
-
(2001)
Theoretical Computer Science
, vol.268
, pp. 323-349
-
-
Case, J.1
Jain, S.2
Kaufmann, S.3
Sharma, A.4
Stephan, F.5
-
5
-
-
33750516723
-
Adaptive anomaly detection with evolving connectionist systems
-
Liao, Y., Vemuri, V. R., and Pasos, A.; Adaptive anomaly detection with evolving connectionist systems. Journal of Network and Computer Applications 30 (2007) 60-80.
-
(2007)
Journal of Network and Computer Applications
, vol.30
, pp. 60-80
-
-
Liao, Y.1
Vemuri, V.R.2
Pasos, A.3
-
6
-
-
0348216539
-
Adaptation to Drifting Concepts. Progress in Artificial Intelligence
-
Castillo, G., Gama, J., and Medas, P.; Adaptation to Drifting Concepts. Progress in Artificial Intelligence, Lecture Notes in Computer Science 2902 (2003) 279-293.
-
(2003)
Lecture Notes in Computer Science
, vol.2902
, pp. 279-293
-
-
Castillo, G.1
Gama, J.2
Medas, P.3
-
7
-
-
33749618778
-
Learning with Drift Detection. Advances in Artificial Intelligence - SBIA 2004
-
Gama, J., Medas, P., Castillo, G., and Rodrigues, P.; Learning with Drift Detection. Advances in Artificial Intelligence - SBIA 2004, Lecture Notes in Computer Science 3171 (2004) 286-295.
-
(2004)
Lecture Notes in Computer Science
, vol.3171
, pp. 286-295
-
-
Gama, J.1
Medas, P.2
Castillo, G.3
Rodrigues, P.4
-
8
-
-
37249007129
-
Real-time data mining of non-stationary data streams from sensor networks
-
In Press
-
Cohen, L., Avrahami-Bakish, G., Last, M., Kandel, A., and Kipersztok, O.; Real-time data mining of non-stationary data streams from sensor networks. Information Fusion In Press, (2007).
-
(2007)
Information Fusion
-
-
Cohen, L.1
Avrahami-Bakish, G.2
Last, M.3
Kandel, A.4
Kipersztok, O.5
-
9
-
-
1242310003
-
Incremental learning with partial instance memory
-
Maloof, M. A. and Michalski, R. S.; Incremental learning with partial instance memory. Artificial Intelligence 154 (2004) 95-126.
-
(2004)
Artificial Intelligence
, vol.154
, pp. 95-126
-
-
Maloof, M.A.1
Michalski, R.S.2
-
10
-
-
24644449205
-
Learning classification rules for telecom customer call data under concept drift. Soft Computing - A Fusion of Foundations
-
Black, M. and Hickey, R.; Learning classification rules for telecom customer call data under concept drift. Soft Computing - A Fusion of Foundations, Methodologies and Applications 8 (2003) 102-108.
-
(2003)
Methodologies and Applications
, vol.8
, pp. 102-108
-
-
Black, M.1
Hickey, R.2
-
11
-
-
2542525075
-
Adaptive probabilistic neural networks for pattern classification in time-varying environment
-
Rutkowski, L.; Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Transactions on Neural Networks 15 (2004) 811-827.
-
(2004)
IEEE Transactions on Neural Networks
, vol.15
, pp. 811-827
-
-
Rutkowski, L.1
-
12
-
-
6344221942
-
Encoding a priori information in neural networks to improve its modeling performance under non-stationary environment
-
Cheng-Kui, G., Zheng-Ou, W., and Ya-Ming, S.; Encoding a priori information in neural networks to improve its modeling performance under non-stationary environment. International Conference on Machine Learning and Cybernetics (ICMLC 2004) 5 (2004) 3068-3072.
-
(2004)
International Conference on Machine Learning and Cybernetics (ICMLC
, vol.5
, pp. 3068-3072
-
-
Cheng-Kui, G.1
Zheng-Ou, W.2
Ya-Ming, S.3
-
13
-
-
35048891979
-
Classifier Ensembles for Changing Environments. Multiple Classifier Systems (MCS 2004)
-
Kuncheva, L. I.; Classifier Ensembles for Changing Environments. Multiple Classifier Systems (MCS 2004), Lecture Notes in Computer Science 3077 (2004) 1-15.
-
(2004)
Lecture Notes in Computer Science
, vol.3077
, pp. 1-15
-
-
Kuncheva, L.I.1
-
14
-
-
0030819669
-
Empirical Support for Winnow and Weighted-Majority Algorithms: Results on a Calendar Scheduling Domain
-
Blum, A.; Empirical Support for Winnow and Weighted-Majority Algorithms: Results on a Calendar Scheduling Domain. Machine Learning 26 (1997) 5-23.
-
(1997)
Machine Learning
, vol.26
, pp. 5-23
-
-
Blum, A.1
-
15
-
-
1942483164
-
-
Ph.D. Dissertation, University of California, Berkeley
-
Oza, N.; Online Ensemble Learning, Ph.D. Dissertation, (2001) University of California, Berkeley.
-
(2001)
Online Ensemble Learning
-
-
Oza, N.1
-
16
-
-
26444530040
-
ACE: Adaptive Classifiers-Ensemble System for Concept-Drifting Environments
-
Multiple Classifier Systems MCS
-
Kyosuke, N., Koichiro, Y., and Takashi, O.; ACE: Adaptive Classifiers-Ensemble System for Concept-Drifting Environments. Multiple Classifier Systems (MCS 2005), Lecture Notes in Computer Science 3541 (2005) 176-185.
-
(2005)
Lecture Notes in Computer Science
, vol.3541
, pp. 176-185
-
-
Kyosuke, N.1
Koichiro, Y.2
Takashi, O.3
-
18
-
-
7444250934
-
Fast and Light Boosting for Adaptive Mining of Data Streams. Advances in Knowledge Discovery and Data Mining
-
Chu, F. and Zaniolo, C.; Fast and Light Boosting for Adaptive Mining of Data Streams. Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science 3056 (2004) 282-292.
-
(2004)
Lecture Notes in Computer Science
, vol.3056
, pp. 282-292
-
-
Chu, F.1
Zaniolo, C.2
-
19
-
-
0035521110
-
Learn++: An incremental learning algorithm for supervised neural networks. Systems, Man and Cybernetics, Part C
-
Polikar, R., Upda, L., Upda, S. S., and Honavar, V.; Learn++: an incremental learning algorithm for supervised neural networks. Systems, Man and Cybernetics, Part C, IEEE Transactions on 31 (2001) 497-508.
-
(2001)
IEEE Transactions on 31
, pp. 497-508
-
-
Polikar, R.1
Upda, L.2
Upda, S.S.3
Honavar, V.4
|