-
1
-
-
84894274214
-
Machine learning for neuroimaging with scikit-learn
-
Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., Thirion, B., Varoquaux, G., Machine learning for neuroimaging with scikit-learn. Front. Neuroinform., 8, 2014.
-
(2014)
Front. Neuroinform.
, vol.8
-
-
Abraham, A.1
Pedregosa, F.2
Eickenberg, M.3
Gervais, P.4
Mueller, A.5
Kossaifi, J.6
Gramfort, A.7
Thirion, B.8
Varoquaux, G.9
-
2
-
-
77956649096
-
A survey of cross-validation procedures for model selection
-
Arlot, S., Celisse, A., A survey of cross-validation procedures for model selection. Stat. Surv., 4, 2010, 40.
-
(2010)
Stat. Surv.
, vol.4
, pp. 40
-
-
Arlot, S.1
Celisse, A.2
-
3
-
-
79952071547
-
Diffeomorphic registration using geodesic shooting and gauss-newton optimisation
-
Ashburner, J., Friston, K.J., Diffeomorphic registration using geodesic shooting and gauss-newton optimisation. NeuroImage 55 (2011), 954–967.
-
(2011)
NeuroImage
, vol.55
, pp. 954-967
-
-
Ashburner, J.1
Friston, K.J.2
-
4
-
-
0030211964
-
Bagging predictors
-
Breiman, L., Bagging predictors. Mach. Learn., 24, 1996, 123.
-
(1996)
Mach. Learn.
, vol.24
, pp. 123
-
-
Breiman, L.1
-
5
-
-
0000343716
-
Submodel selection and evaluation in regression. the x-random case
-
Breiman, L., Spector, P., Submodel selection and evaluation in regression. the x-random case. Int. Stat. Rev./Rev. Int. Stat., 1992, 291–319.
-
(1992)
Int. Stat. Rev./Rev. Int. Stat.
, pp. 291-319
-
-
Breiman, L.1
Spector, P.2
-
6
-
-
55149117963
-
Prediction and interpretation of distributed neural activity with sparse models
-
Carroll, M.K., Cecchi, G.A., Rish, I., Garg, R., Rao, A.R., Prediction and interpretation of distributed neural activity with sparse models. NeuroImage, 44, 2009, 112.
-
(2009)
NeuroImage
, vol.44
, pp. 112
-
-
Carroll, M.K.1
Cecchi, G.A.2
Rish, I.3
Garg, R.4
Rao, A.R.5
-
7
-
-
33646861385
-
Exploring predictive and reproducible modeling with the single-subject FIAC dataset
-
Chen, X., Pereira, F., Lee, W., et al. Exploring predictive and reproducible modeling with the single-subject FIAC dataset. Hum. Brain Mapp., 27, 2006, 452.
-
(2006)
Hum. Brain Mapp.
, vol.27
, pp. 452
-
-
Chen, X.1
Pereira, F.2
Lee, W.3
-
8
-
-
84904515523
-
Comparing within-subject classification and regularization methods in fMRI for large and small sample sizes
-
Churchill, N.W., Yourganov, G., Strother, S.C., Comparing within-subject classification and regularization methods in fMRI for large and small sample sizes. Hum. Brain Mapp., 35, 2014, 4499.
-
(2014)
Hum. Brain Mapp.
, vol.35
, pp. 4499
-
-
Churchill, N.W.1
Yourganov, G.2
Strother, S.C.3
-
9
-
-
77949659744
-
A review of challenges in the use of fMRI for disease classification/characterization and a projection pursuit application from a multi-site fMRI schizophrenia study
-
Demirci, O., Clark, V.P., Magnotta, V.A., Andreasen, N.C., Lauriello, J., Kiehl, K.A., Pearlson, G.D., Calhoun, V.D., A review of challenges in the use of fMRI for disease classification/characterization and a projection pursuit application from a multi-site fMRI schizophrenia study. Brain Imaging Behav. 2 (2008), 207–226.
-
(2008)
Brain Imaging Behav.
, vol.2
, pp. 207-226
-
-
Demirci, O.1
Clark, V.P.2
Magnotta, V.A.3
Andreasen, N.C.4
Lauriello, J.5
Kiehl, K.A.6
Pearlson, G.D.7
Calhoun, V.D.8
-
10
-
-
67349212224
-
Consistency and variability in functional localisers
-
Duncan, K.J., Pattamadilok, C., Knierim, I., Devlin, J.T., Consistency and variability in functional localisers. Neuroimage, 46, 2009, 1018.
-
(2009)
Neuroimage
, vol.46
, pp. 1018
-
-
Duncan, K.J.1
Pattamadilok, C.2
Knierim, I.3
Devlin, J.T.4
-
11
-
-
40149084821
-
Pattern classification of sad facial processing toward the development of neurobiological markers in depression
-
Fu, C.H., Mourao-Miranda, J., Costafreda, S.G., Khanna, A., Marquand, A.F., Williams, S.C., Brammer, M.J., Pattern classification of sad facial processing toward the development of neurobiological markers in depression. Biol. Psychiatry 63 (2008), 656–662.
-
(2008)
Biol. Psychiatry
, vol.63
, pp. 656-662
-
-
Fu, C.H.1
Mourao-Miranda, J.2
Costafreda, S.G.3
Khanna, A.4
Marquand, A.F.5
Williams, S.C.6
Brammer, M.J.7
-
12
-
-
84994026358
-
Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python a flexible, lightweight and extensible neuroimaging data processing framework in python
-
Gorgolewski, K., Burns, C.D., Madison, C., Clark, D., Halchenko, Y.O., Waskom, M.L., Ghosh, S.S., Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python a flexible, lightweight and extensible neuroimaging data processing framework in python. Front. Neuroinform., 5, 2011, 13.
-
(2011)
Front. Neuroinform.
, vol.5
, pp. 13
-
-
Gorgolewski, K.1
Burns, C.D.2
Madison, C.3
Clark, D.4
Halchenko, Y.O.5
Waskom, M.L.6
Ghosh, S.S.7
-
13
-
-
84885201514
-
Identifying predictive regions from fMRI with TV-L1 prior
-
Gramfort, A., Thirion, B., Varoquaux, G., Identifying predictive regions from fMRI with TV-L1 prior. PRNI, 2013, 17.
-
(2013)
PRNI
, pp. 17
-
-
Gramfort, A.1
Thirion, B.2
Varoquaux, G.3
-
14
-
-
84895819996
-
MEG and EEG data analysis with MNEPython
-
Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks, T., Parkkonen, L., et al. MEG and EEG data analysis with MNEPython. Front. Neurosci., 2013.
-
(2013)
Front. Neurosci.
-
-
Gramfort, A.1
Luessi, M.2
Larson, E.3
Engemann, D.A.4
Strohmeier, D.5
Brodbeck, C.6
Goj, R.7
Jas, M.8
Brooks, T.9
Parkkonen, L.10
-
15
-
-
84891634715
-
MNE software for processing MEG and EEG data
-
Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., Parkkonen, L., Hämäläinen, M.S., MNE software for processing MEG and EEG data. Neuroimage 86 (2014), 446–460.
-
(2014)
Neuroimage
, vol.86
, pp. 446-460
-
-
Gramfort, A.1
Luessi, M.2
Larson, E.3
Engemann, D.A.4
Strohmeier, D.5
Brodbeck, C.6
Parkkonen, L.7
Hämäläinen, M.S.8
-
16
-
-
84874528278
-
Interpretable whole-brain prediction analysis with graphnet
-
Grosenick, L., Klingenberg, B., Katovich, K., Knutson, B., Taylor, J.E., Interpretable whole-brain prediction analysis with graphnet. NeuroImage, 72, 2013, 304.
-
(2013)
NeuroImage
, vol.72
, pp. 304
-
-
Grosenick, L.1
Klingenberg, B.2
Katovich, K.3
Knutson, B.4
Taylor, J.E.5
-
17
-
-
64049085419
-
PyMVPA: a python toolbox for multivariate pattern analysis of fmri data
-
Hanke, M., Halchenko, Y.O., Sederberg, P.B., Hanson, S.J., Haxby, J.V., Pollmann, S., PyMVPA: a python toolbox for multivariate pattern analysis of fmri data. Neuroinformatics, 7, 2009, 37.
-
(2009)
Neuroinformatics
, vol.7
, pp. 37
-
-
Hanke, M.1
Halchenko, Y.O.2
Sederberg, P.B.3
Hanson, S.J.4
Haxby, J.V.5
Pollmann, S.6
-
18
-
-
0003684449
-
The Elements of Statistical Learning
-
Springer
-
Hastie, T., Tibshirani, R., Friedman, J., The Elements of Statistical Learning. 2009, Springer.
-
(2009)
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
19
-
-
0035964792
-
Distributed and overlapping representations of faces and objects in ventral temporal cortex
-
Haxby, J.V., Gobbini, I.M., Furey, M.L., et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293, 2001, 2425.
-
(2001)
Science
, vol.293
, pp. 2425
-
-
Haxby, J.V.1
Gobbini, I.M.2
Furey, M.L.3
-
20
-
-
84937390759
-
A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives
-
Haynes, J.D., A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron, 87, 2015, 257.
-
(2015)
Neuron
, vol.87
, pp. 257
-
-
Haynes, J.D.1
-
21
-
-
33745587777
-
Decoding mental states from brain activity in humans
-
Haynes, J.D., Rees, G., Decoding mental states from brain activity in humans. Nat. Rev. Neurosci., 7, 2006, 523.
-
(2006)
Nat. Rev. Neurosci.
, vol.7
, pp. 523
-
-
Haynes, J.D.1
Rees, G.2
-
22
-
-
0036143741
-
Face repetition effects in implicit and explicit memory tests as measured by fMRI
-
Henson, R., Shallice, T., Gorno-Tempini, M., Dolan, R., Face repetition effects in implicit and explicit memory tests as measured by fMRI. Cereb. Cortex, 12, 2002, 178.
-
(2002)
Cereb. Cortex
, vol.12
, pp. 178
-
-
Henson, R.1
Shallice, T.2
Gorno-Tempini, M.3
Dolan, R.4
-
23
-
-
84961801092
-
Improving sparse recovery on structured images with bagged clustering
-
Hoyos-Idrobo, A., Schwartz, Y., Varoquaux, G., Thirion, B., Improving sparse recovery on structured images with bagged clustering. PRNI, 2015.
-
(2015)
PRNI
-
-
Hoyos-Idrobo, A.1
Schwartz, Y.2
Varoquaux, G.3
Thirion, B.4
-
24
-
-
17844380475
-
Decoding the visual and subjective contents of the human brain
-
Kamitani, Y., Tong, F., Decoding the visual and subjective contents of the human brain. Nat. Neurosci., 8, 2005, 679.
-
(2005)
Nat. Neurosci.
, vol.8
, pp. 679
-
-
Kamitani, Y.1
Tong, F.2
-
25
-
-
84874507977
-
Total activation: fMRI deconvolution through spatio-temporal regularization
-
Karahanoğlu, F.I., Caballero-Gaudes, C., Lazeyras, F., Van De Ville, D., Total activation: fMRI deconvolution through spatio-temporal regularization. Neuroimage, 73, 2013, 121.
-
(2013)
Neuroimage
, vol.73
, pp. 121
-
-
Karahanoğlu, F.I.1
Caballero-Gaudes, C.2
Lazeyras, F.3
Van De Ville, D.4
-
26
-
-
67649239046
-
Recruitment of an area involved in eye movements during mental arithmetic
-
Knops, A., Thirion, B., Hubbard, E.M., Michel, V., Dehaene, S., Recruitment of an area involved in eye movements during mental arithmetic. Science, 324, 2009, 1583.
-
(2009)
Science
, vol.324
, pp. 1583
-
-
Knops, A.1
Thirion, B.2
Hubbard, E.M.3
Michel, V.4
Dehaene, S.5
-
27
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection, in: IJCAI, 14, pp
-
1137.
-
Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection, in: IJCAI, 14, pp. 1137.
-
(1995)
-
-
Kohavi, R.1
-
28
-
-
33644870032
-
Information-based functional brain mapping
-
Kriegeskorte, N., Goebel, R., Bandettini, P., Information-based functional brain mapping. Proc. Natl. Acad. Sci. USA, 103, 2006, 3862.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 3862
-
-
Kriegeskorte, N.1
Goebel, R.2
Bandettini, P.3
-
29
-
-
77952293118
-
Classifier ensembles for fMRI data analysis an experiment
-
Kuncheva, L.I., Rodríguez, J.J., Classifier ensembles for fMRI data analysis an experiment. Magn. Reson. Imaging, 28, 2010, 583.
-
(2010)
Magn. Reson. Imaging
, vol.28
, pp. 583
-
-
Kuncheva, L.I.1
Rodríguez, J.J.2
-
30
-
-
0037225392
-
The evaluation of preprocessing choices in single-subject bold fMRI using npairs performance metrics
-
LaConte, S., Anderson, J., Muley, S., Ashe, J., Frutiger, S., Rehm, K., Hansen, L., Yacoub, E., Hu, X., Rottenberg, D., The evaluation of preprocessing choices in single-subject bold fMRI using npairs performance metrics. NeuroImage, 18, 2003, 10.
-
(2003)
NeuroImage
, vol.18
, pp. 10
-
-
LaConte, S.1
Anderson, J.2
Muley, S.3
Ashe, J.4
Frutiger, S.5
Rehm, K.6
Hansen, L.7
Yacoub, E.8
Hu, X.9
Rottenberg, D.10
-
31
-
-
19344370474
-
Support vector machines for temporal classification of block design fMRI data
-
LaConte, S., Strother, S., Cherkassky, V., Anderson, J., Hu, X., Support vector machines for temporal classification of block design fMRI data. NeuroImage 26 (2005), 317–329.
-
(2005)
NeuroImage
, vol.26
, pp. 317-329
-
-
LaConte, S.1
Strother, S.2
Cherkassky, V.3
Anderson, J.4
Hu, X.5
-
32
-
-
79955009105
-
Detecting stable distributed patterns of brain activation using gini contrast
-
Langs, G., Menze, B.H., Lashkari, D., Golland, P., Detecting stable distributed patterns of brain activation using gini contrast. NeuroImage, 56, 2011, 497.
-
(2011)
NeuroImage
, vol.56
, pp. 497
-
-
Langs, G.1
Menze, B.H.2
Lashkari, D.3
Golland, P.4
-
33
-
-
84880326929
-
Adding dynamics to the human connectome project with MEG
-
Larson-Prior, L.J., Oostenveld, R., Della Penna, S., Michalareas, G., Prior, F., Babajani-Feremi, A., Schoffelen, J.M., Marzetti, L., de Pasquale, F., Pompeo, F.Di., et al. Adding dynamics to the human connectome project with MEG. Neuroimage 80 (2013), 190–201.
-
(2013)
Neuroimage
, vol.80
, pp. 190-201
-
-
Larson-Prior, L.J.1
Oostenveld, R.2
Della Penna, S.3
Michalareas, G.4
Prior, F.5
Babajani-Feremi, A.6
Schoffelen, J.M.7
Marzetti, L.8
de Pasquale, F.9
Di Pompeo, F.10
-
34
-
-
34548409688
-
Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
-
Marcus, D.S., Wang, T.H., Parker, J., et al. Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn. Neurosci., 19, 2007, 1498.
-
(2007)
J Cogn. Neurosci.
, vol.19
, pp. 1498
-
-
Marcus, D.S.1
Wang, T.H.2
Parker, J.3
-
35
-
-
77958487535
-
Stability selection
-
Meinshausen, N., Bühlmann, P., Stability selection. J. R. Stat. Soc. B, 72, 2010, 417.
-
(2010)
J. R. Stat. Soc. B
, vol.72
, pp. 417
-
-
Meinshausen, N.1
Bühlmann, P.2
-
36
-
-
79959811645
-
Total variation regularization for fMRI-based prediction of behavior
-
Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Thirion, B., Total variation regularization for fMRI-based prediction of behavior. IEEE Trans. Med. Imaging, 30, 2011, 1328.
-
(2011)
IEEE Trans. Med. Imaging
, vol.30
, pp. 1328
-
-
Michel, V.1
Gramfort, A.2
Varoquaux, G.3
Eger, E.4
Thirion, B.5
-
37
-
-
34247528547
-
Analysis of functional magnetic resonance imaging in python
-
Millman, K.J., Brett, M., Analysis of functional magnetic resonance imaging in python. Comput. Sci. Eng. 9 (2007), 52–55.
-
(2007)
Comput. Sci. Eng.
, vol.9
, pp. 52-55
-
-
Millman, K.J.1
Brett, M.2
-
38
-
-
45749091592
-
Predicting human brain activity associated with the meanings of nouns
-
Mitchell, T.M., Shinkareva, S.V., Carlson, A., Chang, K.M., Malave, V.L., Mason, R.A., Just, M.A., Predicting human brain activity associated with the meanings of nouns. Science, 320, 2008, 1191.
-
(2008)
Science
, vol.320
, pp. 1191
-
-
Mitchell, T.M.1
Shinkareva, S.V.2
Carlson, A.3
Chang, K.M.4
Malave, V.L.5
Mason, R.A.6
Just, M.A.7
-
39
-
-
84859770999
-
Social-cognitive deficits in normal aging
-
Moran, J.M., Jolly, E., Mitchell, J.P., Social-cognitive deficits in normal aging. J. Neurosci., 32, 2012, 5553.
-
(2012)
J. Neurosci.
, vol.32
, pp. 5553
-
-
Moran, J.M.1
Jolly, E.2
Mitchell, J.P.3
-
40
-
-
28244492778
-
Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data
-
Mouro-Miranda, J., Bokde, A.L., Born, C., Hampel, H., Stetter, M., Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage, 28, 2005, 980.
-
(2005)
NeuroImage
, vol.28
, pp. 980
-
-
Mouro-Miranda, J.1
Bokde, A.L.2
Born, C.3
Hampel, H.4
Stetter, M.5
-
41
-
-
79955010085
-
Encoding and decoding in fMRI
-
Naselaris, T., Kay, K.N., Nishimoto, S., Gallant, J.L., Encoding and decoding in fMRI. Neuroimage, 56, 2011, 400.
-
(2011)
Neuroimage
, vol.56
, pp. 400
-
-
Naselaris, T.1
Kay, K.N.2
Nishimoto, S.3
Gallant, J.L.4
-
42
-
-
33748178966
-
Beyond mind-reading multi-voxel pattern analysis of fMRI data
-
Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V., Beyond mind-reading multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci., 10, 2006, 424.
-
(2006)
Trends Cogn. Sci.
, vol.10
, pp. 424
-
-
Norman, K.A.1
Polyn, S.M.2
Detre, G.J.3
Haxby, J.V.4
-
43
-
-
80555140075
-
Scikit-learn machine learning in python
-
Pedregosa, F., Varoquaux, G., Gramfort, A., et al. Scikit-learn machine learning in python. J. Mach. Learn. Res., 12, 2011, 2825.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
-
44
-
-
85013881961
-
Statistical parametric mapping: the analysis of functional brain images
-
Academic Press London
-
Penny, W.D., Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E., Statistical parametric mapping: the analysis of functional brain images. 2007, Academic Press, London.
-
(2007)
-
-
Penny, W.D.1
Friston, K.J.2
Ashburner, J.T.3
Kiebel, S.J.4
Nichols, T.E.5
-
45
-
-
65549168742
-
Machine learning classifiers and fMRI: a tutorial overview
-
Pereira, F., Mitchell, T., Botvinick, M., Machine learning classifiers and fMRI: a tutorial overview. Neuroimage, 45, 2009, S199.
-
(2009)
Neuroimage
, vol.45
, pp. S199
-
-
Pereira, F.1
Mitchell, T.2
Botvinick, M.3
-
46
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
Platt, J., Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. large margin Classif., 10, 1999, 61.
-
(1999)
Adv. large margin Classif.
, vol.10
, pp. 61
-
-
Platt, J.1
-
47
-
-
69249102387
-
Decoding the large-scale structure of brain function by classifying mental states across individuals
-
Poldrack, R.A., Halchenko, Y.O., Hanson, S.J., Decoding the large-scale structure of brain function by classifying mental states across individuals. Psychol. Sci., 20, 2009, 1364.
-
(2009)
Psychol. Sci.
, vol.20
, pp. 1364
-
-
Poldrack, R.A.1
Halchenko, Y.O.2
Hanson, S.J.3
-
48
-
-
84886752096
-
Toward open sharing of task-based fMRI data: the OpenfMRI project
-
Poldrack, R.A., Barch, D.M., Mitchell, J.P., et al. Toward open sharing of task-based fMRI data: the OpenfMRI project. Front. Neuroinform., 7, 2013.
-
(2013)
Front. Neuroinform.
, vol.7
-
-
Poldrack, R.A.1
Barch, D.M.2
Mitchell, J.P.3
-
49
-
-
84916624596
-
Thickness network features for prognostic applications in dementia
-
Raamana, P.R., Weiner, M.W., Wang, L., Beg, M.F., Thickness network features for prognostic applications in dementia. Neurobiol. Aging 36:Suppl. 1 (2015), S91–S102.
-
(2015)
Neurobiol. Aging
, vol.36
, pp. S91-S102
-
-
Raamana, P.R.1
Weiner, M.W.2
Wang, L.3
Beg, M.F.4
-
50
-
-
84857059478
-
Model sparsity and brain pattern interpretation of classification models in neuroimaging
-
Rasmussen, P.M., Hansen, L.K., Madsen, K.H., Churchill, N.W., Strother, S.C., Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recognit. 45:Suppl. 1 (2012), 2085–2100.
-
(2012)
Pattern Recognit.
, vol.45
, pp. 2085-2100
-
-
Rasmussen, P.M.1
Hansen, L.K.2
Madsen, K.H.3
Churchill, N.W.4
Strother, S.C.5
-
51
-
-
84885198820
-
Stability-based multivariate mapping using scors
-
Rondina, J.M., Shawe-Taylor, J., Mourão-Miranda, J., Stability-based multivariate mapping using scors. PRNI, 2013, 198.
-
(2013)
PRNI
, pp. 198
-
-
Rondina, J.M.1
Shawe-Taylor, J.2
Mourão-Miranda, J.3
-
52
-
-
77951976541
-
Sparse logistic regression for whole-brain classification of fMRI data
-
Ryali, S., Supekar, K., Abrams, D., Menon, V., Sparse logistic regression for whole-brain classification of fMRI data. NeuroImage, 51, 2010, 752.
-
(2010)
NeuroImage
, vol.51
, pp. 752
-
-
Ryali, S.1
Supekar, K.2
Abrams, D.3
Menon, V.4
-
53
-
-
84899022724
-
Mapping cognitive ontologies to and from the brain
-
Schwartz, Y., Thirion, B., Varoquaux, G., Mapping cognitive ontologies to and from the brain. NIPS, 2013.
-
(2013)
NIPS
-
-
Schwartz, Y.1
Thirion, B.2
Varoquaux, G.3
-
54
-
-
84904977581
-
Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state
-
Sitt, J.D., King, J.R., El Karoui, I., Rohaut, B., Faugeras, F., Gramfort, A., Cohen, L., Sigman, M., Dehaene, S., Naccache, L., Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain 137 (2014), 2258–2270.
-
(2014)
Brain
, vol.137
, pp. 2258-2270
-
-
Sitt, J.D.1
King, J.R.2
El Karoui, I.3
Rohaut, B.4
Faugeras, F.5
Gramfort, A.6
Cohen, L.7
Sigman, M.8
Dehaene, S.9
Naccache, L.10
-
55
-
-
0036338502
-
The quantitative evaluation of functional neuroimaging experiments: the npairs data analysis framework
-
Strother, S.C., Anderson, J., Hansen, L.K., Kjems, U., Kustra, R., Sidtis, J., Frutiger, S., Muley, S., LaConte, S., Rottenberg, D., The quantitative evaluation of functional neuroimaging experiments: the npairs data analysis framework. NeuroImage, 15, 2002, 747.
-
(2002)
NeuroImage
, vol.15
, pp. 747
-
-
Strother, S.C.1
Anderson, J.2
Hansen, L.K.3
Kjems, U.4
Kustra, R.5
Sidtis, J.6
Frutiger, S.7
Muley, S.8
LaConte, S.9
Rottenberg, D.10
-
56
-
-
84990037191
-
Stability and reproducibility in fMRI analysis
-
Strother, S.C., Rasmussen, P.M., Churchill, N.W., Hansen, L.K., Stability and reproducibility in fMRI analysis. Pract. Appl. Sparse Model., 2014, 99.
-
(2014)
Pract. Appl. Sparse Model.
, pp. 99
-
-
Strother, S.C.1
Rasmussen, P.M.2
Churchill, N.W.3
Hansen, L.K.4
-
57
-
-
84941315259
-
How machine learning is shaping cognitive neuroimaging
-
Varoquaux, G., Thirion, B., How machine learning is shaping cognitive neuroimaging. GigaScience, 3, 2014, 28.
-
(2014)
GigaScience
, vol.3
, pp. 28
-
-
Varoquaux, G.1
Thirion, B.2
-
58
-
-
84867118966
-
Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering
-
Varoquaux, G., Gramfort, A., Thirion, B., Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering. ICML, 2012, 1375.
-
(2012)
ICML
, pp. 1375
-
-
Varoquaux, G.1
Gramfort, A.2
Thirion, B.3
-
59
-
-
52049106624
-
Neural mechanisms of emotion regulation: evidence for two independent prefrontal-subcortical pathways
-
Wager, T.D., Davidson, M.L., Hughes, B.L., et al. Neural mechanisms of emotion regulation: evidence for two independent prefrontal-subcortical pathways. Neuron, 59, 2008, 1037.
-
(2008)
Neuron
, vol.59
, pp. 1037
-
-
Wager, T.D.1
Davidson, M.L.2
Hughes, B.L.3
-
60
-
-
55349089531
-
Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns
-
Yamashita, O., aki Sato, M., Yoshioka, T., Tong, F., Kamitani, Y., Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns. NeuroImage, 42, 2008, 1414.
-
(2008)
NeuroImage
, vol.42
, pp. 1414
-
-
Yamashita, O.1
aki Sato, M.2
Yoshioka, T.3
Tong, F.4
Kamitani, Y.5
-
61
-
-
84971334981
-
Choosing Prediction over Explanation in Psychology: Lessons from Machine Learning, Figshare Preprint
-
Yarkoni, T., Westfall, J., 2016. Choosing Prediction over Explanation in Psychology: Lessons from Machine Learning, Figshare Preprint.
-
(2016)
-
-
Yarkoni, T.1
Westfall, J.2
|