메뉴 건너뛰기




Volumn 145, Issue , 2017, Pages 166-179

Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines

Author keywords

Bagging; Cross validation; Decoding; FMRI; Model selection; MVPA; Sparse

Indexed keywords

ACCURACY; ARTICLE; BRAIN DECODER; FUNCTIONAL MAGNETIC RESONANCE IMAGING; MAGNETOENCEPHALOGRAPHY; NEUROIMAGING; PRACTICE GUIDELINE; PREDICTION; PRIORITY JOURNAL; SIMULATION; VALIDATION PROCESS; WORKING MEMORY; BRAIN DISEASE; DIAGNOSTIC IMAGING; HUMAN; PROCEDURES; STANDARDS;

EID: 85006839843     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2016.10.038     Document Type: Article
Times cited : (517)

References (61)
  • 2
    • 77956649096 scopus 로고    scopus 로고
    • A survey of cross-validation procedures for model selection
    • Arlot, S., Celisse, A., A survey of cross-validation procedures for model selection. Stat. Surv., 4, 2010, 40.
    • (2010) Stat. Surv. , vol.4 , pp. 40
    • Arlot, S.1    Celisse, A.2
  • 3
    • 79952071547 scopus 로고    scopus 로고
    • Diffeomorphic registration using geodesic shooting and gauss-newton optimisation
    • Ashburner, J., Friston, K.J., Diffeomorphic registration using geodesic shooting and gauss-newton optimisation. NeuroImage 55 (2011), 954–967.
    • (2011) NeuroImage , vol.55 , pp. 954-967
    • Ashburner, J.1    Friston, K.J.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., Bagging predictors. Mach. Learn., 24, 1996, 123.
    • (1996) Mach. Learn. , vol.24 , pp. 123
    • Breiman, L.1
  • 5
    • 0000343716 scopus 로고
    • Submodel selection and evaluation in regression. the x-random case
    • Breiman, L., Spector, P., Submodel selection and evaluation in regression. the x-random case. Int. Stat. Rev./Rev. Int. Stat., 1992, 291–319.
    • (1992) Int. Stat. Rev./Rev. Int. Stat. , pp. 291-319
    • Breiman, L.1    Spector, P.2
  • 6
    • 55149117963 scopus 로고    scopus 로고
    • Prediction and interpretation of distributed neural activity with sparse models
    • Carroll, M.K., Cecchi, G.A., Rish, I., Garg, R., Rao, A.R., Prediction and interpretation of distributed neural activity with sparse models. NeuroImage, 44, 2009, 112.
    • (2009) NeuroImage , vol.44 , pp. 112
    • Carroll, M.K.1    Cecchi, G.A.2    Rish, I.3    Garg, R.4    Rao, A.R.5
  • 7
    • 33646861385 scopus 로고    scopus 로고
    • Exploring predictive and reproducible modeling with the single-subject FIAC dataset
    • Chen, X., Pereira, F., Lee, W., et al. Exploring predictive and reproducible modeling with the single-subject FIAC dataset. Hum. Brain Mapp., 27, 2006, 452.
    • (2006) Hum. Brain Mapp. , vol.27 , pp. 452
    • Chen, X.1    Pereira, F.2    Lee, W.3
  • 8
    • 84904515523 scopus 로고    scopus 로고
    • Comparing within-subject classification and regularization methods in fMRI for large and small sample sizes
    • Churchill, N.W., Yourganov, G., Strother, S.C., Comparing within-subject classification and regularization methods in fMRI for large and small sample sizes. Hum. Brain Mapp., 35, 2014, 4499.
    • (2014) Hum. Brain Mapp. , vol.35 , pp. 4499
    • Churchill, N.W.1    Yourganov, G.2    Strother, S.C.3
  • 9
    • 77949659744 scopus 로고    scopus 로고
    • A review of challenges in the use of fMRI for disease classification/characterization and a projection pursuit application from a multi-site fMRI schizophrenia study
    • Demirci, O., Clark, V.P., Magnotta, V.A., Andreasen, N.C., Lauriello, J., Kiehl, K.A., Pearlson, G.D., Calhoun, V.D., A review of challenges in the use of fMRI for disease classification/characterization and a projection pursuit application from a multi-site fMRI schizophrenia study. Brain Imaging Behav. 2 (2008), 207–226.
    • (2008) Brain Imaging Behav. , vol.2 , pp. 207-226
    • Demirci, O.1    Clark, V.P.2    Magnotta, V.A.3    Andreasen, N.C.4    Lauriello, J.5    Kiehl, K.A.6    Pearlson, G.D.7    Calhoun, V.D.8
  • 12
    • 84994026358 scopus 로고    scopus 로고
    • Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python a flexible, lightweight and extensible neuroimaging data processing framework in python
    • Gorgolewski, K., Burns, C.D., Madison, C., Clark, D., Halchenko, Y.O., Waskom, M.L., Ghosh, S.S., Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python a flexible, lightweight and extensible neuroimaging data processing framework in python. Front. Neuroinform., 5, 2011, 13.
    • (2011) Front. Neuroinform. , vol.5 , pp. 13
    • Gorgolewski, K.1    Burns, C.D.2    Madison, C.3    Clark, D.4    Halchenko, Y.O.5    Waskom, M.L.6    Ghosh, S.S.7
  • 13
    • 84885201514 scopus 로고    scopus 로고
    • Identifying predictive regions from fMRI with TV-L1 prior
    • Gramfort, A., Thirion, B., Varoquaux, G., Identifying predictive regions from fMRI with TV-L1 prior. PRNI, 2013, 17.
    • (2013) PRNI , pp. 17
    • Gramfort, A.1    Thirion, B.2    Varoquaux, G.3
  • 18
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning
    • Springer
    • Hastie, T., Tibshirani, R., Friedman, J., The Elements of Statistical Learning. 2009, Springer.
    • (2009)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 19
    • 0035964792 scopus 로고    scopus 로고
    • Distributed and overlapping representations of faces and objects in ventral temporal cortex
    • Haxby, J.V., Gobbini, I.M., Furey, M.L., et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293, 2001, 2425.
    • (2001) Science , vol.293 , pp. 2425
    • Haxby, J.V.1    Gobbini, I.M.2    Furey, M.L.3
  • 20
    • 84937390759 scopus 로고    scopus 로고
    • A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives
    • Haynes, J.D., A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron, 87, 2015, 257.
    • (2015) Neuron , vol.87 , pp. 257
    • Haynes, J.D.1
  • 21
    • 33745587777 scopus 로고    scopus 로고
    • Decoding mental states from brain activity in humans
    • Haynes, J.D., Rees, G., Decoding mental states from brain activity in humans. Nat. Rev. Neurosci., 7, 2006, 523.
    • (2006) Nat. Rev. Neurosci. , vol.7 , pp. 523
    • Haynes, J.D.1    Rees, G.2
  • 22
    • 0036143741 scopus 로고    scopus 로고
    • Face repetition effects in implicit and explicit memory tests as measured by fMRI
    • Henson, R., Shallice, T., Gorno-Tempini, M., Dolan, R., Face repetition effects in implicit and explicit memory tests as measured by fMRI. Cereb. Cortex, 12, 2002, 178.
    • (2002) Cereb. Cortex , vol.12 , pp. 178
    • Henson, R.1    Shallice, T.2    Gorno-Tempini, M.3    Dolan, R.4
  • 23
    • 84961801092 scopus 로고    scopus 로고
    • Improving sparse recovery on structured images with bagged clustering
    • Hoyos-Idrobo, A., Schwartz, Y., Varoquaux, G., Thirion, B., Improving sparse recovery on structured images with bagged clustering. PRNI, 2015.
    • (2015) PRNI
    • Hoyos-Idrobo, A.1    Schwartz, Y.2    Varoquaux, G.3    Thirion, B.4
  • 24
    • 17844380475 scopus 로고    scopus 로고
    • Decoding the visual and subjective contents of the human brain
    • Kamitani, Y., Tong, F., Decoding the visual and subjective contents of the human brain. Nat. Neurosci., 8, 2005, 679.
    • (2005) Nat. Neurosci. , vol.8 , pp. 679
    • Kamitani, Y.1    Tong, F.2
  • 26
    • 67649239046 scopus 로고    scopus 로고
    • Recruitment of an area involved in eye movements during mental arithmetic
    • Knops, A., Thirion, B., Hubbard, E.M., Michel, V., Dehaene, S., Recruitment of an area involved in eye movements during mental arithmetic. Science, 324, 2009, 1583.
    • (2009) Science , vol.324 , pp. 1583
    • Knops, A.1    Thirion, B.2    Hubbard, E.M.3    Michel, V.4    Dehaene, S.5
  • 27
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection, in: IJCAI, 14, pp
    • 1137.
    • Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection, in: IJCAI, 14, pp. 1137.
    • (1995)
    • Kohavi, R.1
  • 29
    • 77952293118 scopus 로고    scopus 로고
    • Classifier ensembles for fMRI data analysis an experiment
    • Kuncheva, L.I., Rodríguez, J.J., Classifier ensembles for fMRI data analysis an experiment. Magn. Reson. Imaging, 28, 2010, 583.
    • (2010) Magn. Reson. Imaging , vol.28 , pp. 583
    • Kuncheva, L.I.1    Rodríguez, J.J.2
  • 31
    • 19344370474 scopus 로고    scopus 로고
    • Support vector machines for temporal classification of block design fMRI data
    • LaConte, S., Strother, S., Cherkassky, V., Anderson, J., Hu, X., Support vector machines for temporal classification of block design fMRI data. NeuroImage 26 (2005), 317–329.
    • (2005) NeuroImage , vol.26 , pp. 317-329
    • LaConte, S.1    Strother, S.2    Cherkassky, V.3    Anderson, J.4    Hu, X.5
  • 32
    • 79955009105 scopus 로고    scopus 로고
    • Detecting stable distributed patterns of brain activation using gini contrast
    • Langs, G., Menze, B.H., Lashkari, D., Golland, P., Detecting stable distributed patterns of brain activation using gini contrast. NeuroImage, 56, 2011, 497.
    • (2011) NeuroImage , vol.56 , pp. 497
    • Langs, G.1    Menze, B.H.2    Lashkari, D.3    Golland, P.4
  • 34
    • 34548409688 scopus 로고    scopus 로고
    • Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
    • Marcus, D.S., Wang, T.H., Parker, J., et al. Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn. Neurosci., 19, 2007, 1498.
    • (2007) J Cogn. Neurosci. , vol.19 , pp. 1498
    • Marcus, D.S.1    Wang, T.H.2    Parker, J.3
  • 37
    • 34247528547 scopus 로고    scopus 로고
    • Analysis of functional magnetic resonance imaging in python
    • Millman, K.J., Brett, M., Analysis of functional magnetic resonance imaging in python. Comput. Sci. Eng. 9 (2007), 52–55.
    • (2007) Comput. Sci. Eng. , vol.9 , pp. 52-55
    • Millman, K.J.1    Brett, M.2
  • 39
    • 84859770999 scopus 로고    scopus 로고
    • Social-cognitive deficits in normal aging
    • Moran, J.M., Jolly, E., Mitchell, J.P., Social-cognitive deficits in normal aging. J. Neurosci., 32, 2012, 5553.
    • (2012) J. Neurosci. , vol.32 , pp. 5553
    • Moran, J.M.1    Jolly, E.2    Mitchell, J.P.3
  • 40
    • 28244492778 scopus 로고    scopus 로고
    • Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data
    • Mouro-Miranda, J., Bokde, A.L., Born, C., Hampel, H., Stetter, M., Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage, 28, 2005, 980.
    • (2005) NeuroImage , vol.28 , pp. 980
    • Mouro-Miranda, J.1    Bokde, A.L.2    Born, C.3    Hampel, H.4    Stetter, M.5
  • 42
    • 33748178966 scopus 로고    scopus 로고
    • Beyond mind-reading multi-voxel pattern analysis of fMRI data
    • Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V., Beyond mind-reading multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci., 10, 2006, 424.
    • (2006) Trends Cogn. Sci. , vol.10 , pp. 424
    • Norman, K.A.1    Polyn, S.M.2    Detre, G.J.3    Haxby, J.V.4
  • 44
    • 85013881961 scopus 로고    scopus 로고
    • Statistical parametric mapping: the analysis of functional brain images
    • Academic Press London
    • Penny, W.D., Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E., Statistical parametric mapping: the analysis of functional brain images. 2007, Academic Press, London.
    • (2007)
    • Penny, W.D.1    Friston, K.J.2    Ashburner, J.T.3    Kiebel, S.J.4    Nichols, T.E.5
  • 45
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: a tutorial overview
    • Pereira, F., Mitchell, T., Botvinick, M., Machine learning classifiers and fMRI: a tutorial overview. Neuroimage, 45, 2009, S199.
    • (2009) Neuroimage , vol.45 , pp. S199
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 46
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • Platt, J., Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. large margin Classif., 10, 1999, 61.
    • (1999) Adv. large margin Classif. , vol.10 , pp. 61
    • Platt, J.1
  • 47
    • 69249102387 scopus 로고    scopus 로고
    • Decoding the large-scale structure of brain function by classifying mental states across individuals
    • Poldrack, R.A., Halchenko, Y.O., Hanson, S.J., Decoding the large-scale structure of brain function by classifying mental states across individuals. Psychol. Sci., 20, 2009, 1364.
    • (2009) Psychol. Sci. , vol.20 , pp. 1364
    • Poldrack, R.A.1    Halchenko, Y.O.2    Hanson, S.J.3
  • 48
    • 84886752096 scopus 로고    scopus 로고
    • Toward open sharing of task-based fMRI data: the OpenfMRI project
    • Poldrack, R.A., Barch, D.M., Mitchell, J.P., et al. Toward open sharing of task-based fMRI data: the OpenfMRI project. Front. Neuroinform., 7, 2013.
    • (2013) Front. Neuroinform. , vol.7
    • Poldrack, R.A.1    Barch, D.M.2    Mitchell, J.P.3
  • 49
    • 84916624596 scopus 로고    scopus 로고
    • Thickness network features for prognostic applications in dementia
    • Raamana, P.R., Weiner, M.W., Wang, L., Beg, M.F., Thickness network features for prognostic applications in dementia. Neurobiol. Aging 36:Suppl. 1 (2015), S91–S102.
    • (2015) Neurobiol. Aging , vol.36 , pp. S91-S102
    • Raamana, P.R.1    Weiner, M.W.2    Wang, L.3    Beg, M.F.4
  • 50
    • 84857059478 scopus 로고    scopus 로고
    • Model sparsity and brain pattern interpretation of classification models in neuroimaging
    • Rasmussen, P.M., Hansen, L.K., Madsen, K.H., Churchill, N.W., Strother, S.C., Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recognit. 45:Suppl. 1 (2012), 2085–2100.
    • (2012) Pattern Recognit. , vol.45 , pp. 2085-2100
    • Rasmussen, P.M.1    Hansen, L.K.2    Madsen, K.H.3    Churchill, N.W.4    Strother, S.C.5
  • 52
    • 77951976541 scopus 로고    scopus 로고
    • Sparse logistic regression for whole-brain classification of fMRI data
    • Ryali, S., Supekar, K., Abrams, D., Menon, V., Sparse logistic regression for whole-brain classification of fMRI data. NeuroImage, 51, 2010, 752.
    • (2010) NeuroImage , vol.51 , pp. 752
    • Ryali, S.1    Supekar, K.2    Abrams, D.3    Menon, V.4
  • 53
    • 84899022724 scopus 로고    scopus 로고
    • Mapping cognitive ontologies to and from the brain
    • Schwartz, Y., Thirion, B., Varoquaux, G., Mapping cognitive ontologies to and from the brain. NIPS, 2013.
    • (2013) NIPS
    • Schwartz, Y.1    Thirion, B.2    Varoquaux, G.3
  • 57
    • 84941315259 scopus 로고    scopus 로고
    • How machine learning is shaping cognitive neuroimaging
    • Varoquaux, G., Thirion, B., How machine learning is shaping cognitive neuroimaging. GigaScience, 3, 2014, 28.
    • (2014) GigaScience , vol.3 , pp. 28
    • Varoquaux, G.1    Thirion, B.2
  • 58
    • 84867118966 scopus 로고    scopus 로고
    • Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering
    • Varoquaux, G., Gramfort, A., Thirion, B., Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering. ICML, 2012, 1375.
    • (2012) ICML , pp. 1375
    • Varoquaux, G.1    Gramfort, A.2    Thirion, B.3
  • 59
    • 52049106624 scopus 로고    scopus 로고
    • Neural mechanisms of emotion regulation: evidence for two independent prefrontal-subcortical pathways
    • Wager, T.D., Davidson, M.L., Hughes, B.L., et al. Neural mechanisms of emotion regulation: evidence for two independent prefrontal-subcortical pathways. Neuron, 59, 2008, 1037.
    • (2008) Neuron , vol.59 , pp. 1037
    • Wager, T.D.1    Davidson, M.L.2    Hughes, B.L.3
  • 60
    • 55349089531 scopus 로고    scopus 로고
    • Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns
    • Yamashita, O., aki Sato, M., Yoshioka, T., Tong, F., Kamitani, Y., Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns. NeuroImage, 42, 2008, 1414.
    • (2008) NeuroImage , vol.42 , pp. 1414
    • Yamashita, O.1    aki Sato, M.2    Yoshioka, T.3    Tong, F.4    Kamitani, Y.5
  • 61
    • 84971334981 scopus 로고    scopus 로고
    • Choosing Prediction over Explanation in Psychology: Lessons from Machine Learning, Figshare Preprint
    • Yarkoni, T., Westfall, J., 2016. Choosing Prediction over Explanation in Psychology: Lessons from Machine Learning, Figshare Preprint.
    • (2016)
    • Yarkoni, T.1    Westfall, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.