메뉴 건너뛰기




Volumn 8, Issue FEB, 2014, Pages

Machine learning for neuroimaging with scikit-learn

Author keywords

Machine learning; Neuroimaging; Python; Scikit learn; Statistical learning

Indexed keywords

ALGORITHM; ARTICLE; CLUSTER ANALYSIS; COMMUNICATION PROTOCOL; COMPUTER; COMPUTER LANGUAGE; DECODING; ELECTROENCEPHALOGRAM; ENCODING; INDEPENDENT COMPONENT ANALYSIS; MACHINE LEARNING; MATPLOTLIB; NEUROIMAGING; NIBABEL; NIPY; NUCLEAR MAGNETIC RESONANCE IMAGING; NULL HYPOTHESIS; NUMPY; PYTHON; RECEPTIVE FIELD; RESTING STATE NETWORK; SCIPY; SPATIAL SUMMATION; VISUAL STIMULATION;

EID: 84894274214     PISSN: 16625196     EISSN: None     Source Type: Journal    
DOI: 10.3389/fninf.2014.00014     Document Type: Article
Times cited : (1349)

References (36)
  • 1
    • 1342324773 scopus 로고    scopus 로고
    • Probabilistic independent component analysis for functional magnetic resonance imaging
    • doi: 10.1109/TMI.2003.822821
    • Beckmann, C. F., and Smith, S. M. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. Trans. Med. Imaging 23, 137-152. doi: 10.1109/TMI.2003.822821
    • (2004) Trans. Med. Imaging , vol.23 , pp. 137-152
    • Beckmann, C.F.1    Smith, S.M.2
  • 2
    • 0029166541 scopus 로고
    • Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
    • doi: 10.1002/mrm.1910340409
    • Biswal, B., Zerrin Yetkin, F., Haughton, V., and Hyde, J. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 53719. doi: 10.1002/mrm.1910340409
    • (1995) Magn. Reson. Med , vol.34 , pp. 53719
    • Biswal, B.1    Zerrin Yetkin, F.2    Haughton, V.3    Hyde, J.4
  • 3
    • 0034753663 scopus 로고    scopus 로고
    • A method for making group inferences from fMRI data using independent component analysis
    • doi: 10.1002/hbm.1048
    • Calhoun, V. D., Adali, T., Pearlson, G. D., and Pekar, J. J. (2001). A method for making group inferences from fMRI data using independent component analysis. Hum. Brain Mapp. 14, 140. doi: 10.1002/hbm.1048
    • (2001) Hum. Brain Mapp , vol.14 , pp. 140
    • Calhoun, V.D.1    Adali, T.2    Pearlson, G.D.3    Pekar, J.J.4
  • 4
    • 84863882574 scopus 로고    scopus 로고
    • A whole brain fmri atlas generated via spatially constrained spectral clustering
    • doi: 10.1002/hbm.21333
    • Craddock, R., James, G., Holtzheimer III, P., Hu, X., and Mayberg, H. (2011). A whole brain fmri atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914-1928. doi: 10.1002/hbm.21333
    • (2011) Hum. Brain Mapp , vol.33 , pp. 1914-1928
    • Craddock, R.1    James, G.2    Holtzheimer III, P.3    Hu, X.4    Mayberg, H.5
  • 5
    • 3242708140 scopus 로고    scopus 로고
    • "The multi-voxel pattern analysis (mvpa) toolbox, " in Poster Presented at the Annual Meeting of the Organization for Human Brain Mapping (Florence, Italy). Available online at: Efron, B., Hastie, T., Johnstone, L., and Tibshirani, R. (2004). Least angle regression
    • doi: 10.1214/009053604000000067
    • Detre, G., Polyn, S., Moore, C., Natu, V., Singer, B., Cohen, J., et al. (2006). "The multi-voxel pattern analysis (mvpa) toolbox, " in Poster Presented at the Annual Meeting of the Organization for Human Brain Mapping (Florence, Italy). Available online at: Efron, B., Hastie, T., Johnstone, L., and Tibshirani, R. (2004). Least angle regression. Ann. Stat. 32, 407-499. doi: 10.1214/009053604000000067
    • (2006) Ann. Stat , vol.32 , pp. 407-499
    • Detre, G.1    Polyn, S.2    Moore, C.3    Natu, V.4    Singer, B.5    Cohen, J.6
  • 7
    • 84994026358 scopus 로고    scopus 로고
    • Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python
    • doi: 10.3389/fninf.2011.00013
    • Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., et al. (2011). Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front. Neuroinform. 5:13. doi: 10.3389/fninf.2011.00013
    • (2011) Front. Neuroinform , vol.5 , pp. 13
    • Gorgolewski, K.1    Burns, C.D.2    Madison, C.3    Clark, D.4    Halchenko, Y.O.5    Waskom, M.L.6
  • 9
    • 64049085419 scopus 로고    scopus 로고
    • PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data
    • doi: 10.1007/s12021-008-9041-y
    • Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V., and Pollmann, S. (2009). PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics 7, 37-53. doi: 10.1007/s12021-008-9041-y
    • (2009) Neuroinformatics , vol.7 , pp. 37-53
    • Hanke, M.1    Halchenko, Y.O.2    Sederberg, P.B.3    Hanson, S.J.4    Haxby, J.V.5    Pollmann, S.6
  • 10
    • 38649096007 scopus 로고    scopus 로고
    • Brain reading using full brain support vector machines for object recognition: There is no "face" identification area
    • doi: 10.1162/neco.2007.09-06-340
    • Hanson, S. J., and Halchenko, Y. O. (2008). Brain reading using full brain support vector machines for object recognition: there is no "face" identification area. Neural Comput. 20, 486-503. doi: 10.1162/neco.2007.09-06-340
    • (2008) Neural Comput , vol.20 , pp. 486-503
    • Hanson, S.J.1    Halchenko, Y.O.2
  • 11
    • 4344638967 scopus 로고    scopus 로고
    • Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: Is there a "face" area?
    • doi: 10.1016/j.neuroimage.2004.05.020
    • Hanson, S. J., Matsuka, T., and Haxby, J. V. (2004). Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a "face" area? Neuroimage 23, 156-166. doi: 10.1016/j.neuroimage.2004.05.020
    • (2004) Neuroimage , vol.23 , pp. 156-166
    • Hanson, S.J.1    Matsuka, T.2    Haxby, J.V.3
  • 13
    • 0035964792 scopus 로고    scopus 로고
    • Distributed and overlapping representations of faces and objects in ventral temporal cortex
    • doi: 10.1126/science.1063736
    • Haxby, J. V., Gobbini, I. M., Furey, M. L., Ishai, A., Schouten, J. L., and Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425. doi: 10.1126/science.1063736
    • (2001) Science , vol.293 , pp. 2425
    • Haxby, J.V.1    Gobbini, I.M.2    Furey, M.L.3    Ishai, A.4    Schouten, J.L.5    Pietrini, P.6
  • 14
    • 34247493236 scopus 로고    scopus 로고
    • Matplotlib: A 2d graphics environment
    • doi: 10.1109/MCSE.2007.55
    • Hunter, J. D. (2007). Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9, 90-95. doi: 10.1109/MCSE.2007.55
    • (2007) Comput. Sci. Eng , vol.9 , pp. 90-95
    • Hunter, J.D.1
  • 15
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • doi: 10.1016/S0893-6080(00)00026-5
    • Hyvärinen, A., and Oja, E. (2000). Independent component analysis: algorithms and applications. Neural networks 13, 411-430. doi: 10.1016/S0893-6080(00)00026-5
    • (2000) Neural networks , vol.13 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 16
    • 0043240261 scopus 로고    scopus 로고
    • Independent component analysis of nondeterministic fmri signal sources
    • doi: 10.1016/S1053-8119(03)00097-1
    • Kiviniemi, V., Kantola, J., Jauhiainen, J., Hyvärinen, A., and Tervonen, O. (2003). Independent component analysis of nondeterministic fmri signal sources. Neuroimage 19, 253. doi: 10.1016/S1053-8119(03)00097-1
    • (2003) Neuroimage , vol.19 , pp. 253
    • Kiviniemi, V.1    Kantola, J.2    Jauhiainen, J.3    Hyvärinen, A.4    Tervonen, O.5
  • 17
    • 33644870032 scopus 로고    scopus 로고
    • Information-based functional brain mapping
    • doi: 10.1073/pnas.0600244103
    • Kriegeskorte, N., Goebel, R., and Bandettini, P. (2006). Information-based functional brain mapping. Proc. Natl. Acad. Sci. U.S.A. 103, 3863-3868. doi: 10.1073/pnas.0600244103
    • (2006) Proc. Natl. Acad. Sci. U.S. A , vol.103 , pp. 3863-3868
    • Kriegeskorte, N.1    Goebel, R.2    Bandettini, P.3
  • 18
    • 80555158385 scopus 로고    scopus 로고
    • A supervised clustering approach for fMRI-based inference of brain states
    • doi: 10.1016/j.patcog.2011.04.006
    • Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Keribin, C., and Thirion, B. (2012). A supervised clustering approach for fMRI-based inference of brain states. Pattern Recogn. 45, 2041. doi: 10.1016/j.patcog.2011.04.006
    • (2012) Pattern Recogn , vol.45 , pp. 2041
    • Michel, V.1    Gramfort, A.2    Varoquaux, G.3    Eger, E.4    Keribin, C.5    Thirion, B.6
  • 19
    • 34247528547 scopus 로고    scopus 로고
    • Analysis of functional magnetic resonance imaging in python
    • doi: 10.1109/MCSE.2007.46
    • Millman, K. J., and Brett, M. (2007). Analysis of functional magnetic resonance imaging in python. Comput. Sci. Eng. 9, 52-55. doi: 10.1109/MCSE.2007.46
    • (2007) Comput. Sci. Eng , vol.9 , pp. 52-55
    • Millman, K.J.1    Brett, M.2
  • 20
    • 57049118473 scopus 로고    scopus 로고
    • Visual image reconstruction from human brain activity using a combination of multiscale local image decoders
    • doi: 10.1016/j.neuron.2008.11.004
    • Miyawaki, Y., Uchida, H., Yamashita, O., Sato, M.-A., Morito, Y., Tanabe, H. C., et al. (2008). Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. Neuron 60, 915-929. doi: 10.1016/j.neuron.2008.11.004
    • (2008) Neuron , vol.60 , pp. 915-929
    • Miyawaki, Y.1    Uchida, H.2    Yamashita, O.3    Sato, M.-A.4    Morito, Y.5    Tanabe, H.C.6
  • 21
    • 63349109274 scopus 로고    scopus 로고
    • Revealing representational content with pattern-information fMRI-an introductory guide
    • doi: 10.1093/scan/nsn044
    • Mur, M., Bandettini, P. A., and Kriegeskorte, N. (2009). Revealing representational content with pattern-information fMRI-an introductory guide. Soc. Cogn. Affect. Neurosci. 4, 101-109. doi: 10.1093/scan/nsn044
    • (2009) Soc. Cogn. Affect. Neurosci , vol.4 , pp. 101-109
    • Mur, M.1    Bandettini, P.A.2    Kriegeskorte, N.3
  • 22
    • 79955010085 scopus 로고    scopus 로고
    • Encoding and decoding in fMRI
    • doi: 10.1016/j.neuroimage.2010.07.073
    • Naselaris, T., Kay, K. N., Nishimoto, S., and Gallant, J. L. (2011). Encoding and decoding in fMRI. Neuroimage 56, 400-410. doi: 10.1016/j.neuroimage.2010.07.073
    • (2011) Neuroimage , vol.56 , pp. 400-410
    • Naselaris, T.1    Kay, K.N.2    Nishimoto, S.3    Gallant, J.L.4
  • 23
    • 35748950120 scopus 로고    scopus 로고
    • Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data
    • doi: 10.1162/jocn.2007.19.11.1735
    • O'Toole, A. J., Jiang, F., Abdi, H., Pénard, N., Dunlop, J. P., and Parent, M. A. (2007). Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. J. Cogn. Neurosci. 19, 1735-1752. doi: 10.1162/jocn.2007.19.11.1735
    • (2007) J. Cogn. Neurosci , vol.19 , pp. 1735-1752
    • O'Toole, A.J.1    Jiang, F.2    Abdi, H.3    Pénard, N.4    Dunlop, J.P.5    Parent, M.A.6
  • 25
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: A tutorial overview
    • doi: 10.1016/j.neuroimage.2008.11.007
    • Pereira, F., Mitchell, T., and Botvinick, M. (2009). Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45, S199-S209. doi: 10.1016/j.neuroimage.2008.11.007
    • (2009) Neuroimage , vol.45
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 27
    • 84881091929 scopus 로고    scopus 로고
    • PRoNTo: Pattern recognition for neuroimaging toolbox
    • doi: 10.1007/s12021-013-9178-1
    • Schrouff, J., Rosa, M. J., Rondina, J., Marquand, A., Chu, C., Ashburner, J., et al. (2013). PRoNTo: pattern recognition for neuroimaging toolbox. Neuroinformatics11, 319-337. doi: 10.1007/s12021-013-9178-1
    • (2013) Neuroinformatics , vol.11 , pp. 319-337
    • Schrouff, J.1    Rosa, M.J.2    Rondina, J.3    Marquand, A.4    Chu, C.5    Ashburner, J.6
  • 28
    • 69149106062 scopus 로고    scopus 로고
    • Correspondence of the brain's functional architecture during activation and rest
    • doi: 10.1073/pnas.0905267106
    • Smith, S., Fox, P., Miller, K., Glahn, D., Fox, P., Mackay, C., et al. (2009). Correspondence of the brain's functional architecture during activation and rest. Proc. Natl. Acad. Sci. U.S.A. 106, 13040. doi: 10.1073/pnas.0905267106
    • (2009) Proc. Natl. Acad. Sci. U.S. A , vol.106 , pp. 13040
    • Smith, S.1    Fox, P.2    Miller, K.3    Glahn, D.4    Fox, P.5    McKay, C.6
  • 29
    • 7044260964 scopus 로고    scopus 로고
    • Advances in functional and structural MR image analysis and implementation as FSL
    • doi: 10.1016/j.neuroimage.2004.07.051
    • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208-S219. doi: 10.1016/j.neuroimage.2004.07.051
    • (2004) Neuroimage , vol.23
    • Smith, S.M.1    Jenkinson, M.2    Woolrich, M.W.3    Beckmann, C.F.4    Behrens, T.E.5    Johansen-Berg, H.6
  • 31
    • 33746835024 scopus 로고    scopus 로고
    • Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets
    • doi: 10.1002/hbm.20210
    • Thirion, B., Flandin, G., Pinel, P., Roche, A., Ciuciu, P., and Poline, J. (2006). Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets. Hum. Brain Mapp. 27, 678. doi: 10.1002/hbm.20210
    • (2006) Hum. Brain Mapp , vol.27 , pp. 678
    • Thirion, B.1    Flandin, G.2    Pinel, P.3    Roche, A.4    Ciuciu, P.5    Poline, J.6
  • 32
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. 58, 267-288.
    • (1996) J. R. Stat. Soc , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 33
    • 79952595565 scopus 로고    scopus 로고
    • The numpy array: A structure for efficient numerical computation
    • doi: 10.1109/MCSE.2011.37
    • Van Der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22-30. doi: 10.1109/MCSE.2011.37
    • (2011) Comput. Sci. Eng , vol.13 , pp. 22-30
    • Van Der Walt, S.1    Colbert, S.C.2    Varoquaux, G.3
  • 34
    • 84880327399 scopus 로고    scopus 로고
    • Learning and comparing functional connectomes across subjects
    • doi: 10.1016/j.neuroimage.2013.04.007
    • Varoquaux, G., and Craddock, R. C. (2013). Learning and comparing functional connectomes across subjects. Neuroimage 80, 405. doi: 10.1016/j.neuroimage.2013.04.007
    • (2013) Neuroimage , vol.80 , pp. 405
    • Varoquaux, G.1    Craddock, R.C.2
  • 35
    • 80052329888 scopus 로고    scopus 로고
    • Multi-subject dictionary learning to segment an atlas of brain spontaneous activity
    • doi: 10.1007/978-3-642-22092-0_46
    • Varoquaux, G., Gramfort, A., Pedregosa, F., Michel, V., and Thirion, B. (2011). Multi-subject dictionary learning to segment an atlas of brain spontaneous activity. Inf. Process Med. Imaging 22, 562-573. doi: 10.1007/978-3-642-22092-0_46
    • (2011) Inf. Process Med. Imaging , vol.22 , pp. 562-573
    • Varoquaux, G.1    Gramfort, A.2    Pedregosa, F.3    Michel, V.4    Thirion, B.5
  • 36
    • 77950528347 scopus 로고    scopus 로고
    • A group model for stable multi-subject ICA on fMRI datasets
    • doi: 10.1016/j.neuroimage.2010.02.010
    • Varoquaux, G., Sadaghiani, S., Pinel, P., Kleinschmidt, A., Poline, J. B., and Thirion, B. (2010). A group model for stable multi-subject ICA on fMRI datasets. Neuroimage 51, 288. doi: 10.1016/j.neuroimage.2010.02.010
    • (2010) Neuroimage , vol.51 , pp. 288
    • Varoquaux, G.1    Sadaghiani, S.2    Pinel, P.3    Kleinschmidt, A.4    Poline, J.B.5    Thirion, B.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.