-
1
-
-
0024308522
-
The impact of a military air disaster on the health of assistance workers. A prospective study
-
Bartone, P. T., Ursano, R. J., Wright, K. M., & Ingraham, L. H. (1989). The impact of a military air disaster on the health of assistance workers. A prospective study. Journal of Nervous and Mental Disease, 177, 317-328. http://dx.doi.org/10.1097/00005053-198906000-00001
-
(1989)
Journal of Nervous and Mental Disease
, vol.177
, pp. 317-328
-
-
Bartone, P.T.1
Ursano, R.J.2
Wright, K.M.3
Ingraham, L.H.4
-
2
-
-
0015061989
-
Measurement of physical health in a general population survey
-
Belloc, N. B., Breslow, L., & Hochstim, J. R. (1971). Measurement of physical health in a general population survey. American Journal of Epidemiology, 93, 328-336.
-
(1971)
American Journal of Epidemiology
, vol.93
, pp. 328-336
-
-
Belloc, N.B.1
Breslow, L.2
Hochstim, J.R.3
-
3
-
-
84859449983
-
MultiBoost: A multi-purpose boosting package
-
Benbouzid, D., Busa-Fekete, R., Casagrande, N., Collin, F.-D., & Kégl, B. (2012). MultiBoost: A multi-purpose boosting package. Journal of Machine Learning Research, 13, 549-553.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 549-553
-
-
Benbouzid, D.1
Busa-Fekete, R.2
Casagrande, N.3
Collin, F.-D.4
Kégl, B.5
-
4
-
-
84900801998
-
Trait stress resistance and dynamic stress dissipation on health and well-being: The reservoir model
-
Bergeman, C. S., & Deboeck, P. R. (2014). Trait stress resistance and dynamic stress dissipation on health and well-being: The reservoir model. Research in Human Development, 11, 108-125. http://dx.doi.org/10.1080/15427609.2014.906736
-
(2014)
Research in Human Development
, vol.11
, pp. 108-125
-
-
Bergeman, C.S.1
Deboeck, P.R.2
-
5
-
-
0030076540
-
IQ and ego-resiliency: Conceptual and empirical connections and separateness
-
Block, J., & Kremen, A. M. (1996). IQ and ego-resiliency: Conceptual and empirical connections and separateness. Journal of Personality and Social Psychology, 70, 349-361. http://dx.doi.org/10.1037/0022-3514.70.2.349
-
(1996)
Journal of Personality and Social Psychology
, vol.70
, pp. 349-361
-
-
Block, J.1
Kremen, A.M.2
-
6
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30, 1145-1159. http://dx.doi.org/10.1016/S0031-3203(96)00142-2
-
(1997)
Pattern Recognition
, vol.30
, pp. 1145-1159
-
-
Bradley, A.P.1
-
7
-
-
84883009529
-
Structural equation model trees
-
Brandmaier, A. M., von Oertzen, T., McArdle, J. J., & Lindenberger, U. (2013). Structural equation model trees. Psychological Methods, 18, 71-86. http://dx.doi.org/10.1037/a0030001
-
(2013)
Psychological Methods
, vol.18
, pp. 71-86
-
-
Brandmaier, A.M.1
von Oertzen, T.2
McArdle, J.J.3
Lindenberger, U.4
-
9
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140. http://dx.doi.org/10.1007/BF00058655
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
10
-
-
0035478854
-
Random forests
-
Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. http://dx.doi.org/10.1023/A:1010933404324
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
11
-
-
85052770793
-
-
London, UK: CRC press
-
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. London, UK: CRC press.
-
(1984)
Classification and regression trees
-
-
Breiman, L.1
Friedman, J.2
Stone, C.J.3
Olshen, R.A.4
-
12
-
-
0001858087
-
Multivariate decision trees
-
Brodley, C. E., & Utgoff, P. E. (1995). Multivariate decision trees. Machine Learning, 19, 45-77. http://dx.doi.org/10.1007/BF00994660
-
(1995)
Machine Learning
, vol.19
, pp. 45-77
-
-
Brodley, C.E.1
Utgoff, P.E.2
-
13
-
-
0030166516
-
Classification trees with optimal multivariate decision nodes
-
Brown, D. E., Pittard, C. L., & Park, H. (1996). Classification trees with optimal multivariate decision nodes. Pattern Recognition Letters, 17, 699-703. http://dx.doi.org/10.1016/0167-8655(96)00033-5
-
(1996)
Pattern Recognition Letters
, vol.17
, pp. 699-703
-
-
Brown, D.E.1
Pittard, C.L.2
Park, H.3
-
14
-
-
41549141939
-
Boosting algorithms: Regularization, prediction and model fitting
-
Bůhlmann, P., & Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, 22, 477-505. http://dx.doi.org/10.1214/07-STS242
-
(2007)
Statistical Science
, vol.22
, pp. 477-505
-
-
Bůhlmann, P.1
Hothorn, T.2
-
15
-
-
0043245810
-
Boosting with the L2 loss: Regression and classification
-
Bůhlmann, P., & Yu, B. (2003). Boosting with the L2 loss: Regression and classification. Journal ofthe American Statistical Association, 98, 324-339. http://dx.doi.org/10.1198/016214503000125
-
(2003)
Journal ofthe American Statistical Association
, vol.98
, pp. 324-339
-
-
Bůhlmann, P.1
Yu, B.2
-
18
-
-
77956199737
-
Multi-task learning for boosting with application to web search ranking
-
New York, NY: ACM
-
Chapelle, O., Shivaswamy, P., Vadrevu, S., Weinberger, K., Zhang, Y., & Tseng, B. (2010). Multi-task learning for boosting with application to web search ranking. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1189-1198). New York, NY: ACM.
-
(2010)
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 1189-1198
-
-
Chapelle, O.1
Shivaswamy, P.2
Vadrevu, S.3
Weinberger, K.4
Zhang, Y.5
Tseng, B.6
-
19
-
-
84916597404
-
Business Intelligence and Analytics: From Big Data to Big Impact
-
Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. Management Information Systems Quarterly, 36, 1165-1188.
-
(2012)
Management Information Systems Quarterly
, vol.36
, pp. 1165-1188
-
-
Chen, H.1
Chiang, R.H.2
Storey, V.C.3
-
20
-
-
0021009803
-
A global measure of perceived stress
-
Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24, 385-396. http://dx.doi.org/10.2307/2136404
-
(1983)
Journal of Health and Social Behavior
, vol.24
, pp. 385-396
-
-
Cohen, S.1
Kamarck, T.2
Mermelstein, R.3
-
21
-
-
0011153447
-
Multivariate regression trees: A new technique for modeling species-environment relationships
-
De'Ath, G. (2002). Multivariate regression trees: A new technique for modeling species-environment relationships. Ecology, 83, 1105-1117.
-
(2002)
Ecology
, vol.83
, pp. 1105-1117
-
-
De'Ath, G.1
-
22
-
-
0002629270
-
Maximum likelihood from incomplete data via the Expectation-Maximization (EM) algorithm
-
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the Expectation-Maximization (EM) algorithm. Journal ofthe Royal Statistical Society Series B. Methodological, 39, 1-38.
-
(1977)
Journal ofthe Royal Statistical Society Series B. Methodological
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
23
-
-
0000935603
-
Center for epidemiologic studies depression scale
-
Devins, G. M., & Orme, C. M. (1985). Center for epidemiologic studies depression scale. Test Critiques, 20, 144-160.
-
(1985)
Test Critiques
, vol.20
, pp. 144-160
-
-
Devins, G.M.1
Orme, C.M.2
-
24
-
-
67349236652
-
Multivariate trees for mixed outcomes
-
Dine, A., Larocque, D., & Bellavance, F. (2009). Multivariate trees for mixed outcomes. Computational Statistics & Data Analysis, 53, 3795-3804. http://dx.doi.org/10.1016/J.csda.2009.04.003
-
(2009)
Computational Statistics & Data Analysis
, vol.53
, pp. 3795-3804
-
-
Dine, A.1
Larocque, D.2
Bellavance, F.3
-
25
-
-
44849118698
-
A working guide to boosted regression trees
-
Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal ofAnimal Ecology, 77, 802-813. http://dx.doi.org/10.1111/j.1365-2656.2008.01390.x
-
(2008)
Journal ofAnimal Ecology
, vol.77
, pp. 802-813
-
-
Elith, J.1
Leathwick, J.R.2
Hastie, T.3
-
26
-
-
79952411462
-
Boosting multi-task weak learners with applications to textual and social data
-
(December). Washington, DC: IEEE
-
Faddoul, J. B., Chidlovskii, B., Torre, F., & Gilleron, R. (2010, December). Boosting multi-task weak learners with applications to textual and social data. In Machine Learning and Applications (ICMLA), 2010 Ninth International Conference on (pp. 367-372). Washington, DC: IEEE. http://dx.doi.org/10.1109/ICMLA.2010.61
-
(2010)
Machine Learning and Applications (ICMLA), 2010 Ninth International Conference on
, pp. 367-372
-
-
Faddoul, J.B.1
Chidlovskii, B.2
Torre, F.3
Gilleron, R.4
-
27
-
-
58049204427
-
A multivariate test of association
-
Ferreira, M. A. R., & Purcell, S. M. (2009). A multivariate test of association. Bioinformatics, 25, 132-133. http://dx.doi.org/10.1093/bioinformatics/btn563
-
(2009)
Bioinformatics
, vol.25
, pp. 132-133
-
-
Ferreira, M.A.R.1
Purcell, S.M.2
-
28
-
-
77953774705
-
Multivariate decision trees using different splitting attribute subsets for large datasets
-
A. Farzindar & V. Kešelj (Eds.), Berlin, Germany: Springer
-
Franco-Arcega, A., Carrasco-Ochoa, J. A., Sánchez-Diaaz, G., & Martianez-Trinidad, J. F. (2010). Multivariate decision trees using different splitting attribute subsets for large datasets. In A. Farzindar & V. Kešelj (Eds.), Advances in artificial intelligence (Vol. 6085, pp. 370-373). Berlin, Germany: Springer. http://dx.doi.org/10.1007/978-3-642-13059-5_49
-
(2010)
Advances in artificial intelligence
, vol.6085
, pp. 370-373
-
-
Franco-Arcega, A.1
Carrasco-Ochoa, J.A.2
Sánchez-Diaaz, G.3
Martianez-Trinidad, J.F.4
-
30
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal ofComputer and System Sciences, 55, 119-139. http://dx.doi.org/10.1006/jcss.1997.1504
-
(1997)
Journal ofComputer and System Sciences
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
31
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman, J. (2001). Greedy function approximation: A gradient boosting machine. Annals ofStatistics, 29, 1189-1232. http://dx.doi.org/10.1214/aos/1013203451
-
(2001)
Annals ofStatistics
, vol.29
, pp. 1189-1232
-
-
Friedman, J.1
-
32
-
-
0037186544
-
Stochastic gradient boosting
-
Friedman, J. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38, 367-378. http://dx.doi.org/10.1016/S0167-9473(01)00065-2
-
(2002)
Computational Statistics & Data Analysis
, vol.38
, pp. 367-378
-
-
Friedman, J.1
-
33
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors)
-
Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors). Annals of Statistics, 28, 337-407. http://dx.doi.org/10.1214/aos/1016218223
-
(2000)
Annals of Statistics
, vol.28
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
34
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal ofStatistical Software, 33, 1-22. http://dx.doi.org/10.18637/jss.v033.i01
-
(2010)
Journal ofStatistical Software
, vol.33
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
35
-
-
0038702163
-
Multiple additive regression trees with application in epidemiology
-
Friedman, J. H., & Meulman, J. J. (2003). Multiple additive regression trees with application in epidemiology. Statistics in Medicine, 22, 1365-1381. http://dx.doi.org/10.1002/sim.1501
-
(2003)
Statistics in Medicine
, vol.22
, pp. 1365-1381
-
-
Friedman, J.H.1
Meulman, J.J.2
-
37
-
-
84926207567
-
Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation
-
Goldstein, A., Kapelner, A., Bleich, J., & Pitkin, E. (2015). Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation. Journal ofComputational and Graphical Statistics, 24, 44-65. http://dx.doi.org/10.1080/10618600.2014.907095
-
(2015)
Journal ofComputational and Graphical Statistics
, vol.24
, pp. 44-65
-
-
Goldstein, A.1
Kapelner, A.2
Bleich, J.3
Pitkin, E.4
-
39
-
-
84858711420
-
Regularization for generalized additive mixed models by likelihood-based boosting
-
Groll, A., & Tutz, G. (2012). Regularization for generalized additive mixed models by likelihood-based boosting. Methods ofInformation in Medicine, 51, 168-177. http://dx.doi.org/10.3414/ME11-02-0021
-
(2012)
Methods ofInformation in Medicine
, vol.51
, pp. 168-177
-
-
Groll, A.1
Tutz, G.2
-
41
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29-36. http://dx.doi.org/10.1148/radiology.143.1.7063747
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
43
-
-
0003684449
-
-
(Vol. 2). New York, NY: Springer
-
Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., & Tib-shirani, R. (2009). The elements ofstatistical learning (Vol. 2). New York, NY: Springer. http://dx.doi.org/10.1007/978-0-387-84858-7
-
(2009)
The elements ofstatistical learning
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
Hastie, T.4
Friedman, J.5
Tib-shirani, R.6
-
44
-
-
84946633097
-
Selection of the best subset in regression analysis
-
Hocking, R. R., & Leslie, R. N. (1967). Selection of the best subset in regression analysis. Technometrics, 9, 531-540.
-
(1967)
Technometrics
, vol.9
, pp. 531-540
-
-
Hocking, R.R.1
Leslie, R.N.2
-
45
-
-
84893967115
-
Model-based boosting in R: A hands-on tutorial using the R package mboost
-
Hofner, B., Mayr, A., Robinzonov, N., & Schmid, M. (2014). Model-based boosting in R: A hands-on tutorial using the R package mboost. Computational Statistics, 29, 3-35. http://dx.doi.org/10.1007/s00180-012-0382-5
-
(2014)
Computational Statistics
, vol.29
, pp. 3-35
-
-
Hofner, B.1
Mayr, A.2
Robinzonov, N.3
Schmid, M.4
-
47
-
-
84881622205
-
-
Hothorn, T., Bůhlmann, P., Kneib, T., Schmid, M., & Hofner, B. (2015). mboost: Model-Based Boosting, R package version R package version 2.5-0. Retrieved from http://CRAN.R-project.org/package-mboost
-
(2015)
Mboost: Model-Based Boosting, R package version R package version 2.5-0
-
-
Hothorn, T.1
Bůhlmann, P.2
Kneib, T.3
Schmid, M.4
Hofner, B.5
-
48
-
-
77956921559
-
Model-based boosting 2.0
-
Hothorn, T., Bůhlmann, P., Kneib, T., Schmid, M., & Hofner, B. (2010). Model-based boosting 2.0. Journal ofMachine Learning Research, 99, 2109-2113.
-
(2010)
Journal ofMachine Learning Research
, vol.99
, pp. 2109-2113
-
-
Hothorn, T.1
Bůhlmann, P.2
Kneib, T.3
Schmid, M.4
Hofner, B.5
-
49
-
-
33749677657
-
Unbiased recursive partitioning: A conditional inference framework
-
Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 5, 651-674.
-
(2006)
Journal of Computational and Graphical Statistics
, vol.5
, pp. 651-674
-
-
Hothorn, T.1
Hornik, K.2
Zeileis, A.3
-
50
-
-
51349115095
-
Big data: The future of biocuration
-
Howe, D., Costanzo, M., Fey, P., Gojobori, T., Hannick, L., Hide, W., Rhee, S. Y. (2008). Big data: The future of biocuration. Nature, 455, 47-50. http://dx.doi.org/10.1038/455047a
-
(2008)
Nature
, vol.455
, pp. 47-50
-
-
Howe, D.1
Costanzo, M.2
Fey, P.3
Gojobori, T.4
Hannick, L.5
Hide, W.6
Rhee, S.Y.7
-
51
-
-
33751543346
-
Splitting variable selection for multivariate regression trees
-
Hsiao, W. C., & Shih, Y. S. (2007). Splitting variable selection for multivariate regression trees. Statistics & Probability Letters, 77, 265-271. http://dx.doi.org/10.1016/j.spl.2006.08.014
-
(2007)
Statistics & Probability Letters
, vol.77
, pp. 265-271
-
-
Hsiao, W.C.1
Shih, Y.S.2
-
52
-
-
77951653583
-
Erratum to "An extension of dominance analysis to canonical correlation analysis."
-
Huo, Y., & Budescu, D. V. (2009). Erratum to "An extension of dominance analysis to canonical correlation analysis." Multivariate Behavioral Research 44, 859. http://dx.doi.org/10.1080/00273170903467679
-
(2009)
Multivariate Behavioral Research
, vol.44
, pp. 859
-
-
Huo, Y.1
Budescu, D.V.2
-
53
-
-
0001815269
-
Constructing optimal binary decision trees is NP-complete
-
Hyafil, L., & Rivest, R. L. (1976). Constructing optimal binary decision trees is NP-complete. Information Processing Letters, 5, 15-17. http://dx.doi.org/10.1016/0020-0190(76)90095-8
-
(1976)
Information Processing Letters
, vol.5
, pp. 15-17
-
-
Hyafil, L.1
Rivest, R.L.2
-
54
-
-
0014129195
-
Hierarchical clustering schemes
-
Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32, 241-254. http://dx.doi.org/10.1007/BF02289588
-
(1967)
Psychometrika
, vol.32
, pp. 241-254
-
-
Johnson, S.C.1
-
55
-
-
0041625403
-
Redundancy analysis: An alternative to canonical correlation and multivariate multiple regression in exploring interset associations
-
Lambert, Z. V., Wildt, A. R., & Durand, R. M. (1988). Redundancy analysis: An alternative to canonical correlation and multivariate multiple regression in exploring interset associations. Psychological Bulletin, 104, 282-289. http://dx.doi.org/10.1037/0033-2909.104.2.282
-
(1988)
Psychological Bulletin
, vol.104
, pp. 282-289
-
-
Lambert, Z.V.1
Wildt, A.R.2
Durand, R.M.3
-
56
-
-
84876056969
-
Regression trees for longitudinal and multiresponse data
-
Loh, W. Y., & Zheng, W. (2013). Regression trees for longitudinal and multiresponse data. The Annals of Applied Statistics, 7, 495-522. http://dx.doi.org/10.1214/12-AOAS596
-
(2013)
The Annals of Applied Statistics
, vol.7
, pp. 495-522
-
-
Loh, W.Y.1
Zheng, W.2
-
57
-
-
33746152094
-
Boosting for high-multivariate responses in high-dimensional linear regression
-
Lutz, R. W., & Bůhlmann, P. (2006). Boosting for high-multivariate responses in high-dimensional linear regression. Statistica Sinica, 16, 471-494.
-
(2006)
Statistica Sinica
, vol.16
, pp. 471-494
-
-
Lutz, R.W.1
Bůhlmann, P.2
-
58
-
-
39549113455
-
Classification trees distinguish suicide attempters in major psychiatric disorders: A model of clinical decision making
-
Mann, J. J., Ellis, S. P., Waternaux, C. M., Liu, X., Oquendo, M. A., Malone, K. M., Currier, D. (2008). Classification trees distinguish suicide attempters in major psychiatric disorders: A model of clinical decision making. The Journal of Clinical Psychiatry, 69, 23-31. http://dx.doi.org/10.4088/JCP.v69n0104
-
(2008)
The Journal of Clinical Psychiatry
, vol.69
, pp. 23-31
-
-
Mann, J.J.1
Ellis, S.P.2
Waternaux, C.M.3
Liu, X.4
Oquendo, M.A.5
Malone, K.M.6
Currier, D.7
-
59
-
-
84864621380
-
Trending: The promises and the challenges of big social data
-
M. K. Gold (Ed.), Minneapolis, MN: University of Minnesota Press
-
Manovich, L. (2012). Trending: The promises and the challenges of big social data. In M. K. Gold (Ed.), Debates in the digital humanities (pp. 460-475). Minneapolis, MN: University of Minnesota Press. http://dx.doi.org/10.5749/minnesota/9780816677948.003.0047
-
(2012)
Debates in the digital humanities
, pp. 460-475
-
-
Manovich, L.1
-
60
-
-
85003910494
-
Ensemble trees and CLTs: Statistical inference for supervised learning
-
Mentch, L., & Hooker, G. (2014). Ensemble trees and CLTs: Statistical inference for supervised learning. arXiv:1404.6473.
-
(2014)
ArXiv:1404.6473
-
-
Mentch, L.1
Hooker, G.2
-
61
-
-
84877106221
-
Interpreting multiple linear regression: A guidebook of variable importance
-
Nathans, L. L., Oswald, F. L., & Nimon, K. (2012). Interpreting multiple linear regression: A guidebook of variable importance. Practical Assessment, Research & Evaluation, 17, 1-19.
-
(2012)
Practical Assessment, Research & Evaluation
, vol.17
, pp. 1-19
-
-
Nathans, L.L.1
Oswald, F.L.2
Nimon, K.3
-
62
-
-
77955857683
-
Revisiting interpretation of canonical correlation analysis: A tutorial and demonstration of canonical commonality analysis
-
Nimon, K., Henson, R. K., & Gates, M. S. (2010). Revisiting interpretation of canonical correlation analysis: A tutorial and demonstration of canonical commonality analysis. Multivariate Behavioral Research, 45, 702-724. http://dx.doi.org/10.1080/00273171.2010.498293
-
(2010)
Multivariate Behavioral Research
, vol.45
, pp. 702-724
-
-
Nimon, K.1
Henson, R.K.2
Gates, M.S.3
-
63
-
-
34948865158
-
Multi-task feature selection
-
Obozinski, G., Taskar, B., & Jordan, M. I. (2006). Multi-task feature selection. Statistics Department, UC Berkeley, Tech. Rep. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi = 10.1.1.94. 951&rep=rep1&type=pdf
-
(2006)
Statistics Department, UC Berkeley, Tech. Rep
-
-
Obozinski, G.1
Taskar, B.2
Jordan, M.I.3
-
64
-
-
0033826748
-
Development and validation of a scale to measure perceived control of internal states
-
Pallant, J. F. (2000). Development and validation of a scale to measure perceived control of internal states. Journal ofPersonality Assessment, 75, 308-337. http://dx.doi.org/10.1207/S15327752JPA7502_10
-
(2000)
Journal ofPersonality Assessment
, vol.75
, pp. 308-337
-
-
Pallant, J.F.1
-
65
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal ofMachine Learning Research, 12, 2825-2830.
-
(2011)
Journal ofMachine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Duchesnay, E.7
-
66
-
-
21844512391
-
Large sample confidence regions based on subsamples under minimal assumptions
-
Politis, D. N., & Romano, J. P. (1994). Large sample confidence regions based on subsamples under minimal assumptions. Annals of Statistics, 22, 2031-2050. http://dx.doi.org/10.1214/aos/1176325770
-
(1994)
Annals of Statistics
, vol.22
, pp. 2031-2050
-
-
Politis, D.N.1
Romano, J.P.2
-
67
-
-
0020710183
-
Measures of perceived social support from friends and from family: Three validation studies
-
Procidano, M. E., & Heller, K. (1983). Measures of perceived social support from friends and from family: Three validation studies. American Journal ofCommunity Psychology, 11, 1-24. http://dx.doi.org/10.1007/BF00898416
-
(1983)
American Journal ofCommunity Psychology
, vol.11
, pp. 1-24
-
-
Procidano, M.E.1
Heller, K.2
-
68
-
-
79959313909
-
Factors associated with caregiver stability in permanent placements: A classification tree approach
-
Proctor, L. J., Van Dusen Randazzo, K., Litrownik, A. J., Newton, R. R., Davis, I. P., & Villodas, M. (2011). Factors associated with caregiver stability in permanent placements: A classification tree approach. Child Abuse & Neglect: The International Journal, 35, 425-436. http://dx.doi.org/10.1016/j.chiabu.2011.02.002
-
(2011)
Child Abuse & Neglect: The International Journal
, vol.35
, pp. 425-436
-
-
Proctor, L.J.1
Van Dusen Randazzo, K.2
Litrownik, A.J.3
Newton, R.R.4
Davis, I.P.5
Villodas, M.6
-
70
-
-
0000230432
-
The desired control measure and adjustment among the elderly
-
H. M. Lefcourt (Ed.), New York, NY: Academic Press
-
Reid, D. W., & Ziegler, M. (1981). The desired control measure and adjustment among the elderly. In H. M. Lefcourt (Ed.), Research with the locus ofcontrol construct: Vol. 1, Assessment methods (pp. 127-159). New York, NY: Academic Press. http://dx.doi.org/10.1016/B978-0-12-443201-7.50008-7
-
(1981)
Research with the locus ofcontrol construct: Vol. 1, Assessment methods
, pp. 127-159
-
-
Reid, D.W.1
Ziegler, M.2
-
73
-
-
84903132756
-
Boosting techniques for nonlinear time series models
-
Robinzonov, N., Tutz, G., & Hothorn, T. (2012). Boosting techniques for nonlinear time series models. Advances in Statistical Analysis, 96, 99-122. http://dx.doi.org/10.1007/s10182-011-0163-4
-
(2012)
Advances in Statistical Analysis
, vol.96
, pp. 99-122
-
-
Robinzonov, N.1
Tutz, G.2
Hothorn, T.3
-
74
-
-
85047686139
-
The revised UCLA Loneliness Scale: Concurrent and discriminant validity evidence
-
Russell, D., Peplau, L. A., & Cutrona, C. E. (1980). The revised UCLA Loneliness Scale: Concurrent and discriminant validity evidence. Journal of Personality and Social Psychology, 39, 472-480. http://dx.doi.org/10.1037/0022-3514.39.3.472
-
(1980)
Journal of Personality and Social Psychology
, vol.39
, pp. 472-480
-
-
Russell, D.1
Peplau, L.A.2
Cutrona, C.E.3
-
75
-
-
0029392602
-
The structure of psychological well-being revisited
-
Ryff, C. D., & Keyes, C. L. M. (1995). The structure of psychological well-being revisited. Journal ofPersonality and Social Psychology, 69, 719-727. http://dx.doi.org/10.1037/0022-3514.69.4.719
-
(1995)
Journal ofPersonality and Social Psychology
, vol.69
, pp. 719-727
-
-
Ryff, C.D.1
Keyes, C.L.M.2
-
76
-
-
82955190516
-
What contributes to perceived stress in later life? A recursive partitioning approach
-
Scott, S. B., Jackson, B. R., & Bergeman, C. S. (2011). What contributes to perceived stress in later life? A recursive partitioning approach. Psychology and Aging, 26, 830-843. http://dx.doi.org/10.1037/a0023180
-
(2011)
Psychology and Aging
, vol.26
, pp. 830-843
-
-
Scott, S.B.1
Jackson, B.R.2
Bergeman, C.S.3
-
77
-
-
84876588254
-
Combinations of stressors in midlife: Examining role and domain stressors using regression trees and random forests
-
Scott, S. B., Whitehead, B. R., Bergeman, C. S., & Pitzer, L. (2013). Combinations of stressors in midlife: Examining role and domain stressors using regression trees and random forests. The Journals of Geron-tology Series B, Psychological Sciences and Social Sciences, 68, 464-475. http://dx.doi.org/10.1093/geronb/gbs166
-
(2013)
The Journals of Geron-tology Series B, Psychological Sciences and Social Sciences
, vol.68
, pp. 464-475
-
-
Scott, S.B.1
Whitehead, B.R.2
Bergeman, C.S.3
Pitzer, L.4
-
78
-
-
0000644048
-
Tree-structured methods for longitudinal data
-
Segal, M. R. (1992). Tree-structured methods for longitudinal data. Journal ofthe American Statistical Association, 87, 407-418. http://dx.doi.org/10.1080/01621459.1992.10475220
-
(1992)
Journal ofthe American Statistical Association
, vol.87
, pp. 407-418
-
-
Segal, M.R.1
-
80
-
-
84868300223
-
RE-EM trees: A data mining approach for longitudinal and clustered data
-
Sela, R. J., & Simonoff, J. S. (2012). RE-EM trees: A data mining approach for longitudinal and clustered data. Machine Learning, 86, 169-207. http://dx.doi.org/10.1007/s10994-011-5258-3
-
(2012)
Machine Learning
, vol.86
, pp. 169-207
-
-
Sela, R.J.1
Simonoff, J.S.2
-
81
-
-
0030720998
-
Cumulative and compensatory effects of competence and incompetence on depressive symptoms in children
-
Seroczynski, A. D., Cole, D. A., & Maxwell, S. E. (1997). Cumulative and compensatory effects of competence and incompetence on depressive symptoms in children. Journal of Abnormal Psychology, 106, 586-597. http://dx.doi.org/10.1037/0021-843X.106.4.586
-
(1997)
Journal of Abnormal Psychology
, vol.106
, pp. 586-597
-
-
Seroczynski, A.D.1
Cole, D.A.2
Maxwell, S.E.3
-
82
-
-
0003411739
-
-
Belmont, CA: Wadsworth Cengage Learning
-
Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Belmont, CA: Wadsworth Cengage Learning.
-
(2002)
Experimental and quasi-experimental designs for generalized causal inference
-
-
Shadish, W.R.1
Cook, T.D.2
Campbell, D.T.3
-
83
-
-
61849178068
-
Boosting nonlinear additive autoregressive time series
-
Shafik, N., & Tutz, G. (2009). Boosting nonlinear additive autoregressive time series. Computational Statistics & Data Analysis, 53, 2453-2464. http://dx.doi.org/10.1016/j.csda.2008.12.006
-
(2009)
Computational Statistics & Data Analysis
, vol.53
, pp. 2453-2464
-
-
Shafik, N.1
Tutz, G.2
-
84
-
-
33847096395
-
Bias in random forest variable importance measures: Illustrations, sources and a solution
-
Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8, 25. http://dx.doi.org/10.1186/1471-2105-8-25
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 25
-
-
Strobl, C.1
Boulesteix, A.-L.2
Zeileis, A.3
Hothorn, T.4
-
85
-
-
72449170109
-
An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests
-
Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods, 14, 323-348. http://dx.doi.org/10.1037/a0016973
-
(2009)
Psychological Methods
, vol.14
, pp. 323-348
-
-
Strobl, C.1
Malley, J.2
Tutz, G.3
-
86
-
-
33745775676
-
Constraint based induction of multi-objective regression trees
-
F. Bonchi & J. F. Boulicaut (Eds.), Berlin, Germany: Springer
-
Struyf, J., & Dzeroski, S. (2006). Constraint based induction of multi-objective regression trees. In F. Bonchi & J. F. Boulicaut (Eds.), Knowledge discovery in inductive databases (Vol. 3933, pp. 222-233). Berlin, Germany: Springer. http://dx.doi.org/10.1007/11733492_13
-
(2006)
Knowledge discovery in inductive databases
, vol.3933
, pp. 222-233
-
-
Struyf, J.1
Dzeroski, S.2
-
87
-
-
84950758368
-
The calculation of posterior distributions by data augmentation
-
Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal ofthe American Statistical Association, 82, 528-540. http://dx.doi.org/10.1080/01621459.1987.10478458
-
(1987)
Journal ofthe American Statistical Association
, vol.82
, pp. 528-540
-
-
Tanner, M.A.1
Wong, W.H.2
-
88
-
-
84973777204
-
Stepwise regression and stepwise discriminant analysis need not apply
-
Thompson, B. (1995). Stepwise regression and stepwise discriminant analysis need not apply. Educational and Psychological Measurement, 55, 524-534.
-
(1995)
Educational and Psychological Measurement
, vol.55
, pp. 524-534
-
-
Thompson, B.1
-
89
-
-
84894807965
-
Canonical correlation analysis
-
B. S. Everitt & D. Howell (Eds.), Hoboken, NJ: Wiley, Ltd
-
Thompson, B. (2005). Canonical correlation analysis. In B. S. Everitt & D. Howell (Eds.), Encyclopedia ofstatistics in behavioral science. Hoboken, NJ: Wiley, Ltd. http://dx.doi.org/10.1002/0470013192.bsa068
-
(2005)
Encyclopedia ofstatistics in behavioral science
-
-
Thompson, B.1
-
91
-
-
0034960264
-
Missing value estimation methods for DNA microarrays
-
Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshi-rani, R., Altman, R. B. (2001). Missing value estimation methods for DNA microarrays. Bioinformatics, 17, 520-525. http://dx.doi.org/10.1093/bioinformatics/17.6.520
-
(2001)
Bioinformatics
, vol.17
, pp. 520-525
-
-
Troyanskaya, O.1
Cantor, M.2
Sherlock, G.3
Brown, P.4
Hastie, T.5
Tibshi-rani, R.6
Altman, R.B.7
-
92
-
-
84873489284
-
TATES: Efficient multivariate genotype-phenotype analysis for genome-wide association studies
-
Van der Sluis, S., Posthuma, D., & Dolan, C. V. (2013). TATES: Efficient multivariate genotype-phenotype analysis for genome-wide association studies. PLOS Genetics, 9, e1003235. http://dx.doi.org/10.1371/journal.pgen.1003235
-
(2013)
PLOS Genetics
, vol.9
-
-
Van der Sluis, S.1
Posthuma, D.2
Dolan, C.V.3
-
93
-
-
27544465085
-
Predicting well-being outcomes in later life: An application of classification and regression tree (CART) analysis
-
S. P. Shohov (Ed.), Hauppauge, NY: Nova Science Publishers
-
Wallace, K. A., Bergeman, C. S., & Maxwell, S. E. (2002). Predicting well-being outcomes in later life: An application of classification and regression tree (CART) analysis. In S. P. Shohov (Ed.), Advances in psychology research (Vol. 17, pp. 71-92). Hauppauge, NY: Nova Science Publishers.
-
(2002)
Advances in psychology research
, vol.17
, pp. 71-92
-
-
Wallace, K.A.1
Bergeman, C.S.2
Maxwell, S.E.3
-
94
-
-
70450188142
-
Boosted multi-task learning for face verification with applications to web image and video search
-
Washington, DC: IEEE
-
Wang, X., Zhang, C., & Zhang, Z. (2009). Boosted multi-task learning for face verification with applications to web image and video search. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (pp. 142-149). Washington, DC: IEEE.
-
(2009)
Proceedings IEEE Conference on Computer Vision and Pattern Recognition
, pp. 142-149
-
-
Wang, X.1
Zhang, C.2
Zhang, Z.3
-
96
-
-
44649159456
-
Model-based recursive partitioning
-
Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal of Computational and Graphical Statistics, 17, 492-514. http://dx.doi.org/10.1198/106186008X319331
-
(2008)
Journal of Computational and Graphical Statistics
, vol.17
, pp. 492-514
-
-
Zeileis, A.1
Hothorn, T.2
Hornik, K.3
|