-
1
-
-
44749091499
-
Thymus development and function
-
COI: 1:CAS:528:DC%2BD1cXntlSksbY%3D, PID: 18403191
-
Boehm T. Thymus development and function. Curr Opin Immunol. 2008;20(2):178–84. doi:10.1016/j.coi.2008.03.001.
-
(2008)
Curr Opin Immunol
, vol.20
, Issue.2
, pp. 178-184
-
-
Boehm, T.1
-
2
-
-
79959567594
-
Structure and function of the thymic microenvironment
-
COI: 1:CAS:528:DC%2BC38XhtVSksbbE
-
Manley NR, Richie ER, Blackburn CC, Condie BG, Sage J. Structure and function of the thymic microenvironment. Front Biosci. 2012;17:2461–77.
-
(2012)
Front Biosci
, vol.17
, pp. 2461-2477
-
-
Manley, N.R.1
Richie, E.R.2
Blackburn, C.C.3
Condie, B.G.4
Sage, J.5
-
3
-
-
0035898387
-
Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development
-
COI: 1:CAS:528:DC%2BD3MXlsVCksbw%3D, PID: 11457887
-
Lind EF, Prockop SE, Porritt HE, Petrie HT. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J Exp Med. 2001;194(2):127–34.
-
(2001)
J Exp Med
, vol.194
, Issue.2
, pp. 127-134
-
-
Lind, E.F.1
Prockop, S.E.2
Porritt, H.E.3
Petrie, H.T.4
-
4
-
-
0042470456
-
Positive and negative selection of T cells
-
COI: 1:CAS:528:DC%2BD3sXjtF2isr4%3D, PID: 12414722
-
Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells. Annu Rev Immunol. 2003;21:139–76. doi:10.1146/annurev.immunol.21.120601.141107.
-
(2003)
Annu Rev Immunol
, vol.21
, pp. 139-176
-
-
Starr, T.K.1
Jameson, S.C.2
Hogquist, K.A.3
-
5
-
-
84901487911
-
Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see)
-
COI: 1:CAS:528:DC%2BC2cXotV2jt7o%3D, PID: 24830344
-
Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol. 2014;14(6):377–91. doi:10.1038/nri3667.
-
(2014)
Nat Rev Immunol
, vol.14
, Issue.6
, pp. 377-391
-
-
Klein, L.1
Kyewski, B.2
Allen, P.M.3
Hogquist, K.A.4
-
6
-
-
33646165128
-
A central role for central tolerance
-
COI: 1:CAS:528:DC%2BD28XkvFSqtLk%3D, PID: 16551260
-
Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol. 2006;24(1):571–606. doi:10.1146/annurev.immunol.23.021704.115601.
-
(2006)
Annu Rev Immunol
, vol.24
, Issue.1
, pp. 571-606
-
-
Kyewski, B.1
Klein, L.2
-
7
-
-
84946214324
-
Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance
-
COI: 1:CAS:528:DC%2BC2MXhsl2gs7%2FL, PID: 26544942, This study identified a transcription factor that regulates the thymic expression of a subset of tissue restricted autoantigens that is complementary to those controlled by Aire
-
Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, et al. Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell. 2015;163(4):975–87. doi:10.1016/j.cell.2015.10.013. This study identified a transcription factor that regulates the thymic expression of a subset of tissue restricted autoantigens that is complementary to those controlled by Aire.
-
(2015)
Cell
, vol.163
, Issue.4
, pp. 975-987
-
-
Takaba, H.1
Morishita, Y.2
Tomofuji, Y.3
Danks, L.4
Nitta, T.5
Komatsu, N.6
-
8
-
-
16944367194
-
Positional cloning of the APECED gene
-
COI: 1:CAS:528:DyaK2sXnvFWku7s%3D, PID: 9398839
-
Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M, et al. Positional cloning of the APECED gene. Nat Genet. 1997;17(4):393–8. doi:10.1038/ng1297-393.
-
(1997)
Nat Genet
, vol.17
, Issue.4
, pp. 393-398
-
-
Nagamine, K.1
Peterson, P.2
Scott, H.S.3
Kudoh, J.4
Minoshima, S.5
Heino, M.6
-
9
-
-
0037112047
-
Projection of an immunological self shadow within the thymus by the aire protein
-
COI: 1:CAS:528:DC%2BD38Xos1Wnsb8%3D, PID: 12376594
-
Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298(5597):1395–401. doi:10.1126/science.1075958.
-
(2002)
Science
, vol.298
, Issue.5597
, pp. 1395-1401
-
-
Anderson, M.S.1
Venanzi, E.S.2
Klein, L.3
Chen, Z.4
Berzins, S.P.5
Turley, S.J.6
-
10
-
-
70349194383
-
Thymus-specific deletion of insulin induces autoimmune diabetes
-
COI: 1:CAS:528:DC%2BD1MXpsFKgtLo%3D, PID: 19680229
-
Fan Y, Rudert WA, Grupillo M, He J, Sisino G, Trucco M. Thymus-specific deletion of insulin induces autoimmune diabetes. EMBO J. 2009;28(18):2812–24. doi:10.1038/emboj.2009.212.
-
(2009)
EMBO J
, vol.28
, Issue.18
, pp. 2812-2824
-
-
Fan, Y.1
Rudert, W.A.2
Grupillo, M.3
He, J.4
Sisino, G.5
Trucco, M.6
-
11
-
-
84857195764
-
Essential roles of insulin expression in Aire+ tolerogenic dendritic cells in maintaining peripheral self-tolerance of islet beta-cells
-
COI: 1:CAS:528:DC%2BC38XhsFKitro%3D, PID: 22297234
-
Grupillo M, Gualtierotti G, He J, Sisino G, Bottino R, Rudert WA, et al. Essential roles of insulin expression in Aire+ tolerogenic dendritic cells in maintaining peripheral self-tolerance of islet beta-cells. Cell Immunol. 2012;273(2):115–23. doi:10.1016/j.cellimm.2011.12.010.
-
(2012)
Cell Immunol
, vol.273
, Issue.2
, pp. 115-123
-
-
Grupillo, M.1
Gualtierotti, G.2
He, J.3
Sisino, G.4
Bottino, R.5
Rudert, W.A.6
-
12
-
-
0027201783
-
Islet cell autoantigen 69 kD (ICA69). Molecular cloning and characterization of a novel diabetes-associated autoantigen
-
COI: 1:CAS:528:DyaK3sXmt1CjsbY%3D, PID: 8326004
-
Pietropaolo M, Castano L, Babu S, Buelow R, Kuo YL, Martin S, et al. Islet cell autoantigen 69 kD (ICA69). Molecular cloning and characterization of a novel diabetes-associated autoantigen. J Clin Invest. 1993;92(1):359–71. doi:10.1172/JCI116574.
-
(1993)
J Clin Invest
, vol.92
, Issue.1
, pp. 359-371
-
-
Pietropaolo, M.1
Castano, L.2
Babu, S.3
Buelow, R.4
Kuo, Y.L.5
Martin, S.6
-
13
-
-
84926408965
-
Compromised central tolerance of ICA69 induces multiple organ autoimmunity
-
PID: 25088457
-
Fan Y, Gualtierotti G, Tajima A, Grupillo M, Coppola A, He J, et al. Compromised central tolerance of ICA69 induces multiple organ autoimmunity. J Autoimmun. 2014. doi:10.1016/j.jaut.2014.07.001.
-
(2014)
J Autoimmun
-
-
Fan, Y.1
Gualtierotti, G.2
Tajima, A.3
Grupillo, M.4
Coppola, A.5
He, J.6
-
14
-
-
84868197943
-
Changes in primary lymphoid organs with aging
-
COI: 1:CAS:528:DC%2BC38Xhs1ajsr7I, PID: 22559987
-
Chinn IK, Blackburn CC, Manley NR, Sempowski GD. Changes in primary lymphoid organs with aging. Semin Immunol. 2012;24(5):309–20. doi:10.1016/j.smim.2012.04.005.
-
(2012)
Semin Immunol
, vol.24
, Issue.5
, pp. 309-320
-
-
Chinn, I.K.1
Blackburn, C.C.2
Manley, N.R.3
Sempowski, G.D.4
-
15
-
-
33744826033
-
Thymic output in aged mice
-
COI: 1:CAS:528:DC%2BD28XlvFChtLw%3D, PID: 16717190
-
Hale JS, Boursalian TE, Turk GL, Fink PJ. Thymic output in aged mice. Proc Natl Acad Sci U S A. 2006;103(22):8447–52. doi:10.1073/pnas.0601040103.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, Issue.22
, pp. 8447-8452
-
-
Hale, J.S.1
Boursalian, T.E.2
Turk, G.L.3
Fink, P.J.4
-
16
-
-
0031563146
-
Phenotypic and immunohistological analyses of the human adult thymus: evidence for an active thymus during adult life
-
COI: 1:CAS:528:DyaK2sXlt12hurc%3D, PID: 9259769
-
Bertho JM, Demarquay C, Moulian N, Van Der Meeren A, Berrih-Aknin S, Gourmelon P. Phenotypic and immunohistological analyses of the human adult thymus: evidence for an active thymus during adult life. Cell Immunol. 1997;179(1):30–40. doi:10.1006/cimm.1997.1148.
-
(1997)
Cell Immunol
, vol.179
, Issue.1
, pp. 30-40
-
-
Bertho, J.M.1
Demarquay, C.2
Moulian, N.3
Van Der Meeren, A.4
Berrih-Aknin, S.5
Gourmelon, P.6
-
17
-
-
17444372347
-
Changes in thymic function with age and during the treatment of HIV infection
-
COI: 1:CAS:528:DyaK1MXisVCkug%3D%3D, PID: 9872319
-
Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature. 1998;396(6712):690–5. doi:10.1038/25374.
-
(1998)
Nature
, vol.396
, Issue.6712
, pp. 690-695
-
-
Douek, D.C.1
McFarland, R.D.2
Keiser, P.H.3
Gage, E.A.4
Massey, J.M.5
Haynes, B.F.6
-
18
-
-
84928473003
-
Naive T cell maintenance and function in human aging
-
COI: 1:CAS:528:DC%2BC2MXms1GntLs%3D, PID: 25888703
-
Goronzy JJ, Fang F, Cavanagh MM, Qi Q, Weyand CM. Naive T cell maintenance and function in human aging. J Immunol. 2015;194(9):4073–80. doi:10.4049/jimmunol.1500046.
-
(2015)
J Immunol
, vol.194
, Issue.9
, pp. 4073-4080
-
-
Goronzy, J.J.1
Fang, F.2
Cavanagh, M.M.3
Qi, Q.4
Weyand, C.M.5
-
19
-
-
84885402793
-
The effect of age on thymic function
-
PID: 24109481, COI: 1:CAS:528:DC%2BC2MXht1egt7%2FI
-
Palmer DB. The effect of age on thymic function. Front Immunol. 2013;4:316. doi:10.3389/fimmu.2013.00316.
-
(2013)
Front Immunol
, vol.4
, pp. 316
-
-
Palmer, D.B.1
-
20
-
-
33745712576
-
The thymus is a common target organ in infectious diseases
-
PID: 16846255, COI: 1:CAS:528:DC%2BD28Xms1Cns78%3D
-
Savino W. The thymus is a common target organ in infectious diseases. PLoS Pathog. 2006;2(6):e62. doi:10.1371/journal.ppat.0020062.
-
(2006)
PLoS Pathog
, vol.2
, Issue.6
-
-
Savino, W.1
-
21
-
-
3042836962
-
The thymus during HIV disease: role in pathogenesis and in immune recovery
-
COI: 1:CAS:528:DC%2BD2cXjsVGqsb0%3D, PID: 15078181
-
Ye P, Kirschner DE, Kourtis AP. The thymus during HIV disease: role in pathogenesis and in immune recovery. Curr HIV Res. 2004;2(2):177–83.
-
(2004)
Curr HIV Res
, vol.2
, Issue.2
, pp. 177-183
-
-
Ye, P.1
Kirschner, D.E.2
Kourtis, A.P.3
-
22
-
-
0027959068
-
Neonatal deletion and selective expansion of mouse T cells by exposure to rabies virus nucleocapsid superantigen
-
COI: 1:CAS:528:DyaK2cXlslOiur4%3D, PID: 7931058
-
Lafon M, Scott-Algara D, Marche PN, Cazenave PA, Jouvin-Marche E. Neonatal deletion and selective expansion of mouse T cells by exposure to rabies virus nucleocapsid superantigen. J Exp Med. 1994;180(4):1207–15.
-
(1994)
J Exp Med
, vol.180
, Issue.4
, pp. 1207-1215
-
-
Lafon, M.1
Scott-Algara, D.2
Marche, P.N.3
Cazenave, P.A.4
Jouvin-Marche, E.5
-
23
-
-
0029888375
-
Measles virus infection of thymic epithelium in the SCID-hu mouse leads to thymocyte apoptosis
-
COI: 1:CAS:528:DyaK28XivF2msb4%3D, PID: 8648708
-
Auwaerter PG, Kaneshima H, McCune JM, Wiegand G, Griffin DE. Measles virus infection of thymic epithelium in the SCID-hu mouse leads to thymocyte apoptosis. J Virol. 1996;70(6):3734–40.
-
(1996)
J Virol
, vol.70
, Issue.6
, pp. 3734-3740
-
-
Auwaerter, P.G.1
Kaneshima, H.2
McCune, J.M.3
Wiegand, G.4
Griffin, D.E.5
-
24
-
-
84866688684
-
Immature CD4+CD8+ thymocytes are preferentially infected by measles virus in human thymic organ cultures
-
COI: 1:CAS:528:DC%2BC38XhsVelsbfJ, PID: 23029357
-
Okamoto Y, Vricella LA, Moss WJ, Griffin DE. Immature CD4+CD8+ thymocytes are preferentially infected by measles virus in human thymic organ cultures. PLoS One. 2012;7(9):e45999. doi:10.1371/journal.pone.0045999.
-
(2012)
PLoS One
, vol.7
, Issue.9
-
-
Okamoto, Y.1
Vricella, L.A.2
Moss, W.J.3
Griffin, D.E.4
-
25
-
-
0034651657
-
Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy
-
COI: 1:CAS:528:DC%2BD3cXhtlymu7Y%3D, PID: 10657672
-
Sempowski GD, Hale LP, Sundy JS, Massey JM, Koup RA, Douek DC, et al. Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J Immunol. 2000;164(4):2180–7.
-
(2000)
J Immunol
, vol.164
, Issue.4
, pp. 2180-2187
-
-
Sempowski, G.D.1
Hale, L.P.2
Sundy, J.S.3
Massey, J.M.4
Koup, R.A.5
Douek, D.C.6
-
26
-
-
30744460611
-
Glucocorticoids in T cell apoptosis and function
-
COI: 1:CAS:528:DC%2BD28Xht1WjsL4%3D, PID: 16314919
-
Herold MJ, McPherson KG, Reichardt HM. Glucocorticoids in T cell apoptosis and function. Cell Mol Life Sci. 2006;63(1):60–72. doi:10.1007/s00018-005-5390-y.
-
(2006)
Cell Mol Life Sci
, vol.63
, Issue.1
, pp. 60-72
-
-
Herold, M.J.1
McPherson, K.G.2
Reichardt, H.M.3
-
27
-
-
0029794831
-
Enhancement of thymopoiesis after bone marrow transplant by in vivo interleukin-7
-
COI: 1:CAS:528:DyaK28Xlt1Krsro%3D, PID: 8781449
-
Bolotin E, Smogorzewska M, Smith S, Widmer M, Weinberg K. Enhancement of thymopoiesis after bone marrow transplant by in vivo interleukin-7. Blood. 1996;88(5):1887–94.
-
(1996)
Blood
, vol.88
, Issue.5
, pp. 1887-1894
-
-
Bolotin, E.1
Smogorzewska, M.2
Smith, S.3
Widmer, M.4
Weinberg, K.5
-
28
-
-
84862491835
-
Fibroblast growth factor-7 partially reverses murine thymocyte progenitor aging by repression of Ink4a
-
COI: 1:CAS:528:DC%2BC38XhtVGns7%2FJ, PID: 22555975
-
Berent-Maoz B, Montecino-Rodriguez E, Signer RA, Dorshkind K. Fibroblast growth factor-7 partially reverses murine thymocyte progenitor aging by repression of Ink4a. Blood. 2012;119(24):5715–21. doi:10.1182/blood-2011-12-400002.
-
(2012)
Blood
, vol.119
, Issue.24
, pp. 5715-5721
-
-
Berent-Maoz, B.1
Montecino-Rodriguez, E.2
Signer, R.A.3
Dorshkind, K.4
-
29
-
-
77952296464
-
Regulation of medullary thymic epithelial cell differentiation and function by the signaling protein Sin
-
COI: 1:CAS:528:DC%2BC3cXmtFentLk%3D, PID: 20404100
-
Danzl NM, Donlin LT, Alexandropoulos K. Regulation of medullary thymic epithelial cell differentiation and function by the signaling protein Sin. J Exp Med. 2010;207(5):999–1013. doi:10.1084/jem.20092384.
-
(2010)
J Exp Med
, vol.207
, Issue.5
, pp. 999-1013
-
-
Danzl, N.M.1
Donlin, L.T.2
Alexandropoulos, K.3
-
30
-
-
84859497086
-
Interleukin-22 drives endogenous thymic regeneration in mice
-
COI: 1:CAS:528:DC%2BC38XkvV2rs74%3D, PID: 22383805
-
Dudakov JA, Hanash AM, Jenq RR, Young LF, Ghosh A, Singer NV, et al. Interleukin-22 drives endogenous thymic regeneration in mice. Science. 2012;336(6077):91–5. doi:10.1126/science.1218004.
-
(2012)
Science
, vol.336
, Issue.6077
, pp. 91-95
-
-
Dudakov, J.A.1
Hanash, A.M.2
Jenq, R.R.3
Young, L.F.4
Ghosh, A.5
Singer, N.V.6
-
31
-
-
20344371900
-
Insights into thymic aging and regeneration
-
COI: 1:CAS:528:DC%2BD2MXmtl2ju7c%3D, PID: 15882346
-
Taub DD, Longo DL. Insights into thymic aging and regeneration. Immunol Rev. 2005;205:72–93. doi:10.1111/j.0105-2896.2005.00275.x.
-
(2005)
Immunol Rev
, vol.205
, pp. 72-93
-
-
Taub, D.D.1
Longo, D.L.2
-
32
-
-
34948853362
-
Ghrelin promotes thymopoiesis during aging
-
COI: 1:CAS:528:DC%2BD2sXhtFCnt73O, PID: 17823656
-
Dixit VD, Yang H, Sun Y, Weeraratna AT, Youm YH, Smith RG, et al. Ghrelin promotes thymopoiesis during aging. J Clin Invest. 2007;117(10):2778–90. doi:10.1172/JCI30248.
-
(2007)
J Clin Invest
, vol.117
, Issue.10
, pp. 2778-2790
-
-
Dixit, V.D.1
Yang, H.2
Sun, Y.3
Weeraratna, A.T.4
Youm, Y.H.5
Smith, R.G.6
-
33
-
-
0033042560
-
Thymic microenvironments, 3-D versus 2-D?
-
PID: 9950752
-
van Ewijk W, Wang B, Hollander G, Kawamoto H, Spanopoulou E, Itoi M, et al. Thymic microenvironments, 3-D versus 2-D? Semin Immunol. 1999;11(1):57–64. doi:10.1006/smim.1998.0158.
-
(1999)
Semin Immunol
, vol.11
, Issue.1
, pp. 57-64
-
-
van Ewijk, W.1
Wang, B.2
Hollander, G.3
Kawamoto, H.4
Spanopoulou, E.5
Itoi, M.6
-
34
-
-
84879908506
-
Repairing thymic function
-
COI: 1:CAS:528:DC%2BC3sXnsFSgsr8%3D, PID: 23660780
-
Nunes-Cabaco H, Sousa AE. Repairing thymic function. Curr Opin Organ Transplant. 2013;18(3):363–8. doi:10.1097/MOT.0b013e3283615df9.
-
(2013)
Curr Opin Organ Transplant
, vol.18
, Issue.3
, pp. 363-368
-
-
Nunes-Cabaco, H.1
Sousa, A.E.2
-
35
-
-
78049276268
-
Thymopoiesis in mice depends on a Foxn1-positive thymic epithelial cell lineage
-
COI: 1:CAS:528:DC%2BC3cXht1Wqt7vP, PID: 20823228
-
Corbeaux T, Hess I, Swann JB, Kanzler B, Haas-Assenbaum A, Boehm T. Thymopoiesis in mice depends on a Foxn1-positive thymic epithelial cell lineage. Proc Natl Acad Sci U S A. 2010;107(38):16613–8. doi:10.1073/pnas.1004623107.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.38
, pp. 16613-16618
-
-
Corbeaux, T.1
Hess, I.2
Swann, J.B.3
Kanzler, B.4
Haas-Assenbaum, A.5
Boehm, T.6
-
36
-
-
78149334271
-
Tbata modulates thymic stromal cell proliferation and thymus function
-
COI: 1:CAS:528:DC%2BC3cXhsVSktL3I, PID: 20937703
-
Flomerfelt FA, El Kassar N, Gurunathan C, Chua KS, League SC, Schmitz S, et al. Tbata modulates thymic stromal cell proliferation and thymus function. J Exp Med. 2010;207(11):2521–32. doi:10.1084/jem.20092759.
-
(2010)
J Exp Med
, vol.207
, Issue.11
, pp. 2521-2532
-
-
Flomerfelt, F.A.1
El Kassar, N.2
Gurunathan, C.3
Chua, K.S.4
League, S.C.5
Schmitz, S.6
-
37
-
-
75149113242
-
Spatial (Tbata) expression in mature medullary thymic epithelial cells
-
COI: 1:CAS:528:DC%2BC3cXhtlOht78%3D, PID: 19918778
-
Saade M, Irla M, Yammine M, Boulanger N, Victorero G, Vincentelli R, et al. Spatial (Tbata) expression in mature medullary thymic epithelial cells. Eur J Immunol. 2010;40(2):530–8. doi:10.1002/eji.200939605.
-
(2010)
Eur J Immunol
, vol.40
, Issue.2
, pp. 530-538
-
-
Saade, M.1
Irla, M.2
Yammine, M.3
Boulanger, N.4
Victorero, G.5
Vincentelli, R.6
-
38
-
-
81755183079
-
Foxn1 regulates lineage progression in cortical and medullary thymic epithelial cells but is dispensable for medullary sublineage divergence
-
COI: 1:CAS:528:DC%2BC3MXhsFSrt7fL, PID: 22072979
-
Nowell CS, Bredenkamp N, Tetelin S, Jin X, Tischner C, Vaidya H, et al. Foxn1 regulates lineage progression in cortical and medullary thymic epithelial cells but is dispensable for medullary sublineage divergence. Plos Genet. 2011;7(11):e1002348. doi:10.1371/journal.pgen.1002348.
-
(2011)
Plos Genet
, vol.7
, Issue.11
-
-
Nowell, C.S.1
Bredenkamp, N.2
Tetelin, S.3
Jin, X.4
Tischner, C.5
Vaidya, H.6
-
39
-
-
64149093045
-
Notch activation in thymic epithelial cells induces development of thymic microenvironments
-
COI: 1:CAS:528:DC%2BD1MXks12htbg%3D, PID: 19250680
-
Masuda K, Germeraad WT, Satoh R, Itoi M, Ikawa T, Minato N, et al. Notch activation in thymic epithelial cells induces development of thymic microenvironments. Mol Immunol. 2009;46(8–9):1756–67. doi:10.1016/j.molimm.2009.01.015.
-
(2009)
Mol Immunol
, vol.46
, Issue.8-9
, pp. 1756-1767
-
-
Masuda, K.1
Germeraad, W.T.2
Satoh, R.3
Itoi, M.4
Ikawa, T.5
Minato, N.6
-
40
-
-
0021320975
-
Cell culture of mammalian thymic epithelial cells: growth, structural, and antigenic properties
-
COI: 1:STN:280:DyaL2c7gs1yksw%3D%3D, PID: 6198097
-
Sun TT, Bonitz P, Burns WH. Cell culture of mammalian thymic epithelial cells: growth, structural, and antigenic properties. Cell Immunol. 1984;83(1):1–13.
-
(1984)
Cell Immunol
, vol.83
, Issue.1
, pp. 1-13
-
-
Sun, T.T.1
Bonitz, P.2
Burns, W.H.3
-
41
-
-
0029122076
-
Induction of limited growth and differentiation of early thymic precursor cells by thymic epithelial cell lines
-
COI: 1:CAS:528:DyaK2MXotVars7c%3D, PID: 8537100
-
Saunders DJ, Georgiou HM, Wu L, Shortman K. Induction of limited growth and differentiation of early thymic precursor cells by thymic epithelial cell lines. Immunol Lett. 1995;47(1–2):45–51.
-
(1995)
Immunol Lett
, vol.47
, Issue.1-2
, pp. 45-51
-
-
Saunders, D.J.1
Georgiou, H.M.2
Wu, L.3
Shortman, K.4
-
42
-
-
77955902048
-
Microenvironmental reprogramming of thymic epithelial cells to skin multipotent stem cells
-
COI: 1:CAS:528:DC%2BC3cXhtVyks7nN, PID: 20725041
-
Bonfanti P, Claudinot S, Amici AW, Farley A, Blackburn CC, Barrandon Y. Microenvironmental reprogramming of thymic epithelial cells to skin multipotent stem cells. Nature. 2010;466(7309):978–82. doi:10.1038/nature09269.
-
(2010)
Nature
, vol.466
, Issue.7309
, pp. 978-982
-
-
Bonfanti, P.1
Claudinot, S.2
Amici, A.W.3
Farley, A.4
Blackburn, C.C.5
Barrandon, Y.6
-
43
-
-
84859195934
-
Fetal thymus organ culture
-
PID: 21357146
-
Anderson G, Jenkinson EJ. Fetal thymus organ culture. CSH Protoc. 2007. doi:10.1101/pdb.prot4808.
-
(2007)
CSH Protoc
-
-
Anderson, G.1
Jenkinson, E.J.2
-
44
-
-
0142214640
-
T cell generation including positive and negative selection ex vivo in a three-dimensional matrix
-
COI: 1:CAS:528:DC%2BD3sXotVyqsr4%3D, PID: 14594513
-
Marshall D, Bagley J, Le P, Hogquist K, Cyr S, Von Schild E, et al. T cell generation including positive and negative selection ex vivo in a three-dimensional matrix. J Hematother Stem Cell Res. 2003;12(5):565–74. doi:10.1089/152581603322448277.
-
(2003)
J Hematother Stem Cell Res
, vol.12
, Issue.5
, pp. 565-574
-
-
Marshall, D.1
Bagley, J.2
Le, P.3
Hogquist, K.4
Cyr, S.5
Von Schild, E.6
-
45
-
-
84906254181
-
Engineering the human thymic microenvironment to support thymopoiesis in vivo
-
PID: 24801626, This study shows that human thymic mesenchyme genetically engineered to express VEGF can support human thymic epithelial cell culture in vitro and promote T-cell development in vivo
-
Chung B, Montel-Hagen A, Ge S, Blumberg G, Kim K, Klein S, et al. Engineering the human thymic microenvironment to support thymopoiesis in vivo. Stem Cells. 2014;32(9):2386–96. doi:10.1002/stem.1731. This study shows that human thymic mesenchyme genetically engineered to express VEGF can support human thymic epithelial cell culture in vitro and promote T-cell development in vivo.
-
(2014)
Stem Cells
, vol.32
, Issue.9
, pp. 2386-2396
-
-
Chung, B.1
Montel-Hagen, A.2
Ge, S.3
Blumberg, G.4
Kim, K.5
Klein, S.6
-
46
-
-
77952928949
-
Vascularized tissue engineering mouse chamber model supports thymopoiesis of ectopic thymus tissue grafts
-
COI: 1:CAS:528:DC%2BC3cXmsFeqsbw%3D, PID: 19715386
-
Seach N, Mattesich M, Abberton K, Matsuda K, Tilkorn DJ, Rophael J, et al. Vascularized tissue engineering mouse chamber model supports thymopoiesis of ectopic thymus tissue grafts. Tissue Eng Part C Methods. 2010;16(3):543–51. doi:10.1089/ten.TEC.2009.0135.
-
(2010)
Tissue Eng Part C Methods
, vol.16
, Issue.3
, pp. 543-551
-
-
Seach, N.1
Mattesich, M.2
Abberton, K.3
Matsuda, K.4
Tilkorn, D.J.5
Rophael, J.6
-
47
-
-
18144448857
-
Efficient generation of human T cells from a tissue-engineered thymic organoid
-
COI: 1:CAS:528:DC%2BD3cXltFCju7w%3D, PID: 10888839
-
Poznansky MC, Evans RH, Foxall RB, Olszak IT, Piascik AH, Hartman KE, et al. Efficient generation of human T cells from a tissue-engineered thymic organoid. Nat Biotechnol. 2000;18(7):729–34. doi:10.1038/77288.
-
(2000)
Nat Biotechnol
, vol.18
, Issue.7
, pp. 729-734
-
-
Poznansky, M.C.1
Evans, R.H.2
Foxall, R.B.3
Olszak, I.T.4
Piascik, A.H.5
Hartman, K.E.6
-
48
-
-
84872713269
-
An organotypic coculture model supporting proliferation and differentiation of medullary thymic epithelial cells and promiscuous gene expression
-
COI: 1:CAS:528:DC%2BC3sXhtlWrtb8%3D, PID: 23269248
-
Pinto S, Schmidt K, Egle S, Stark HJ, Boukamp P, Kyewski B. An organotypic coculture model supporting proliferation and differentiation of medullary thymic epithelial cells and promiscuous gene expression. J Immunol. 2013;190(3):1085–93. doi:10.4049/jimmunol.1201843.
-
(2013)
J Immunol
, vol.190
, Issue.3
, pp. 1085-1093
-
-
Pinto, S.1
Schmidt, K.2
Egle, S.3
Stark, H.J.4
Boukamp, P.5
Kyewski, B.6
-
49
-
-
0023463846
-
Cell surface receptors for extracellular matrix molecules
-
COI: 1:CAS:528:DyaL1cXltlWqsA%3D%3D, PID: 2825736
-
Buck CA, Horwitz AF. Cell surface receptors for extracellular matrix molecules. Annu Rev Cell Biol. 1987;3:179–205. doi:10.1146/annurev.cb.03.110187.001143.
-
(1987)
Annu Rev Cell Biol
, vol.3
, pp. 179-205
-
-
Buck, C.A.1
Horwitz, A.F.2
-
50
-
-
84904240136
-
Mechanobiology and developmental control
-
COI: 1:CAS:528:DC%2BC3sXhvFSqurnK, PID: 24099083
-
Mammoto T, Mammoto A, Ingber DE. Mechanobiology and developmental control. Annu Rev Cell Dev Biol. 2013;29:27–61. doi:10.1146/annurev-cellbio-101512-122340.
-
(2013)
Annu Rev Cell Dev Biol
, vol.29
, pp. 27-61
-
-
Mammoto, T.1
Mammoto, A.2
Ingber, D.E.3
-
51
-
-
84880795993
-
Role of the extracellular matrix in regulating stem cell fate
-
COI: 1:CAS:528:DC%2BC3sXhtVOrurjL, PID: 23839578
-
Watt FM, Huck WT. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol. 2013;14(8):467–73. doi:10.1038/nrm3620.
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, Issue.8
, pp. 467-473
-
-
Watt, F.M.1
Huck, W.T.2
-
52
-
-
58149314551
-
Integrin-mediated protein kinase A activation at the leading edge of migrating cells
-
COI: 1:CAS:528:DC%2BD1cXhtlKqtr7F, PID: 18784251
-
Lim CJ, Kain KH, Tkachenko E, Goldfinger LE, Gutierrez E, Allen MD, et al. Integrin-mediated protein kinase A activation at the leading edge of migrating cells. Mol Biol Cell. 2008;19(11):4930–41. doi:10.1091/mbc.E08-06-0564.
-
(2008)
Mol Biol Cell
, vol.19
, Issue.11
, pp. 4930-4941
-
-
Lim, C.J.1
Kain, K.H.2
Tkachenko, E.3
Goldfinger, L.E.4
Gutierrez, E.5
Allen, M.D.6
-
53
-
-
84883458415
-
ECM-modulated cellular dynamics as a driving force for tissue morphogenesis
-
COI: 1:CAS:528:DC%2BC3sXhtVyisLzL
-
Daley WP, Yamada KM. ECM-modulated cellular dynamics as a driving force for tissue morphogenesis. Curr Opin Genes Dev. 2013;23(4):408–14. doi:10.1016/j.gde.2013.05.005.
-
(2013)
Curr Opin Genes Dev
, vol.23
, Issue.4
, pp. 408-414
-
-
Daley, W.P.1
Yamada, K.M.2
-
54
-
-
84904308833
-
3D biofabrication strategies for tissue engineering and regenerative medicine
-
COI: 1:CAS:528:DC%2BC2cXhsVKgt7%2FO, PID: 24905875
-
Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng. 2014;16:247–76. doi:10.1146/annurev-bioeng-071813-105155.
-
(2014)
Annu Rev Biomed Eng
, vol.16
, pp. 247-276
-
-
Bajaj, P.1
Schweller, R.M.2
Khademhosseini, A.3
West, J.L.4
Bashir, R.5
-
55
-
-
33645876484
-
Decellularization of tissues and organs
-
COI: 1:CAS:528:DC%2BD28XjtVKjur4%3D, PID: 16519932
-
Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–83. doi:10.1016/j.biomaterials.2006.02.014.
-
(2006)
Biomaterials
, vol.27
, Issue.19
, pp. 3675-3683
-
-
Gilbert, T.W.1
Sellaro, T.L.2
Badylak, S.F.3
-
56
-
-
77950978556
-
Whole organ decellularization - a tool for bioscaffold fabrication and organ bioengineering
-
PID: 19964173
-
Baptista PM, Orlando G, Mirmalek-Sani SH, Siddiqui M, Atala A, Soker S. Whole organ decellularization - a tool for bioscaffold fabrication and organ bioengineering. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:6526–9. doi:10.1109/IEMBS.2009.5333145.
-
(2009)
Conf Proc IEEE Eng Med Biol Soc
, vol.2009
, pp. 6526-6529
-
-
Baptista, P.M.1
Orlando, G.2
Mirmalek-Sani, S.H.3
Siddiqui, M.4
Atala, A.5
Soker, S.6
-
57
-
-
84880572192
-
Organ bioengineering and regeneration as the new Holy Grail for organ transplantation
-
PID: 23782908
-
Orlando G, Soker S, Stratta RJ. Organ bioengineering and regeneration as the new Holy Grail for organ transplantation. Ann Surg. 2013;258(2):221–32. doi:10.1097/SLA.0b013e31829c79cf.
-
(2013)
Ann Surg
, vol.258
, Issue.2
, pp. 221-232
-
-
Orlando, G.1
Soker, S.2
Stratta, R.J.3
-
58
-
-
84873921900
-
Liver bioengineering: current status and future perspectives
-
COI: 1:CAS:528:DC%2BC3sXotVaktw%3D%3D, PID: 23322990
-
Booth C, Soker T, Baptista P, Ross CL, Soker S, Farooq U, et al. Liver bioengineering: current status and future perspectives. World J Gastroenterol. 2012;18(47):6926–34. doi:10.3748/wjg.v18.i47.6926.
-
(2012)
World J Gastroenterol
, vol.18
, Issue.47
, pp. 6926-6934
-
-
Booth, C.1
Soker, T.2
Baptista, P.3
Ross, C.L.4
Soker, S.5
Farooq, U.6
-
59
-
-
79551525410
-
Regenerative medicine as applied to solid organ transplantation: current status and future challenges
-
PID: 21062367
-
Orlando G, Baptista P, Birchall M, De Coppi P, Farney A, Guimaraes-Souza NK, et al. Regenerative medicine as applied to solid organ transplantation: current status and future challenges. Transpl Int. 2011;24(3):223–32. doi:10.1111/j.1432-2277.2010.01182.x.
-
(2011)
Transpl Int
, vol.24
, Issue.3
, pp. 223-232
-
-
Orlando, G.1
Baptista, P.2
Birchall, M.3
De Coppi, P.4
Farney, A.5
Guimaraes-Souza, N.K.6
-
60
-
-
38949168818
-
Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart
-
COI: 1:CAS:528:DC%2BD1cXhs1Khsb0%3D, PID: 18193059
-
Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14(2):213–21. doi:10.1038/nm1684.
-
(2008)
Nat Med
, vol.14
, Issue.2
, pp. 213-221
-
-
Ott, H.C.1
Matthiesen, T.S.2
Goh, S.K.3
Black, L.D.4
Kren, S.M.5
Netoff, T.I.6
-
61
-
-
77955422758
-
Regeneration and orthotopic transplantation of a bioartificial lung
-
COI: 1:CAS:528:DC%2BC3cXos1yqurs%3D, PID: 20628374
-
Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16(8):927–33. doi:10.1038/nm.2193.
-
(2010)
Nat Med
, vol.16
, Issue.8
, pp. 927-933
-
-
Ott, H.C.1
Clippinger, B.2
Conrad, C.3
Schuetz, C.4
Pomerantseva, I.5
Ikonomou, L.6
-
62
-
-
77955115175
-
Tissue-engineered lungs for in vivo implantation
-
COI: 1:CAS:528:DC%2BC3cXptlCltbs%3D, PID: 20576850
-
Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, et al. Tissue-engineered lungs for in vivo implantation. Science. 2010;329(5991):538–41. doi:10.1126/science.1189345.
-
(2010)
Science
, vol.329
, Issue.5991
, pp. 538-541
-
-
Petersen, T.H.1
Calle, E.A.2
Zhao, L.3
Lee, E.J.4
Gui, L.5
Raredon, M.B.6
-
63
-
-
77954533642
-
Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix
-
COI: 1:CAS:528:DC%2BC3cXntlSjs7k%3D, PID: 20543851
-
Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16(7):814–20. doi:10.1038/nm.2170.
-
(2010)
Nat Med
, vol.16
, Issue.7
, pp. 814-820
-
-
Uygun, B.E.1
Soto-Gutierrez, A.2
Yagi, H.3
Izamis, M.L.4
Guzzardi, M.A.5
Shulman, C.6
-
64
-
-
84879459481
-
Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering
-
COI: 1:CAS:528:DC%2BC3sXpsFGjsLY%3D, PID: 23787110
-
Goh SK, Bertera S, Olsen P, Candiello JE, Halfter W, Uechi G, et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials. 2013;34(28):6760–72. doi:10.1016/j.biomaterials.2013.05.066.
-
(2013)
Biomaterials
, vol.34
, Issue.28
, pp. 6760-6772
-
-
Goh, S.K.1
Bertera, S.2
Olsen, P.3
Candiello, J.E.4
Halfter, W.5
Uechi, G.6
-
65
-
-
57349176894
-
Clinical transplantation of a tissue-engineered airway
-
PID: 19022496
-
Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–30. doi:10.1016/S0140-6736(08)61598-6.
-
(2008)
Lancet
, vol.372
, Issue.9655
, pp. 2023-2030
-
-
Macchiarini, P.1
Jungebluth, P.2
Go, T.3
Asnaghi, M.A.4
Rees, L.E.5
Cogan, T.A.6
-
66
-
-
0141853867
-
Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation
-
PID: 14502156
-
Fedak PW, de Sa MP, Verma S, Nili N, Kazemian P, Butany J, et al. Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. J Thorac Cardiovasc Surg. 2003;126(3):797–806.
-
(2003)
J Thorac Cardiovasc Surg
, vol.126
, Issue.3
, pp. 797-806
-
-
Fedak, P.W.1
de Sa, M.P.2
Verma, S.3
Nili, N.4
Kazemian, P.5
Butany, J.6
-
67
-
-
84934436044
-
Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts
-
This study shows that functional thymus organoids can be generated by repopulating decellularized 3-D thymic scaffolds with isolated thymic epithelial cells (TECs) and that introducing allogeneic TECs in the bioengieered thymus organoids can induce donor specific immune tolerance
-
Fan Y, Tajima A, Goh SK, Geng X, Gualtierotti G, Grupillo M, et al. Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. Mol Ther. 2015. doi:10.1038/mt.2015.77. This study shows that functional thymus organoids can be generated by repopulating decellularized 3-D thymic scaffolds with isolated thymic epithelial cells (TECs) and that introducing allogeneic TECs in the bioengieered thymus organoids can induce donor specific immune tolerance.
-
(2015)
Mol Ther
-
-
Fan, Y.1
Tajima, A.2
Goh, S.K.3
Geng, X.4
Gualtierotti, G.5
Grupillo, M.6
-
68
-
-
84940450729
-
Bioengineering mini functional thymic units with EAK16-II/EAKIIH6 self-assembling hydrogel
-
PID: 25805654
-
Tajima A, Liu W, Pradhan I, Bertera S, Bagia C, Trucco M, et al. Bioengineering mini functional thymic units with EAK16-II/EAKIIH6 self-assembling hydrogel. Clin Immunol. 2015. doi:10.1016/j.clim.2015.03.010.
-
(2015)
Clin Immunol
-
-
Tajima, A.1
Liu, W.2
Pradhan, I.3
Bertera, S.4
Bagia, C.5
Trucco, M.6
-
69
-
-
84881083800
-
Will regenerative medicine replace transplantation?
-
PID: 23906883
-
Orlando G, Soker S, Stratta RJ, Atala A. Will regenerative medicine replace transplantation? Cold Spring Harb Perspect Med. 2013;3(8):a015693. doi:10.1101/cshperspect.a015693.
-
(2013)
Cold Spring Harb Perspect Med
, vol.3
, Issue.8
, pp. a015693
-
-
Orlando, G.1
Soker, S.2
Stratta, R.J.3
Atala, A.4
-
70
-
-
63849242830
-
VEGF-mediated cross-talk within the neonatal murine thymus
-
COI: 1:CAS:528:DC%2BD1MXjslSrsrY%3D, PID: 19088378
-
Cuddihy AR, Ge S, Zhu J, Jang J, Chidgey A, Thurston G, et al. VEGF-mediated cross-talk within the neonatal murine thymus. Blood. 2009;113(12):2723–31. doi:10.1182/blood-2008-06-162040.
-
(2009)
Blood
, vol.113
, Issue.12
, pp. 2723-2731
-
-
Cuddihy, A.R.1
Ge, S.2
Zhu, J.3
Jang, J.4
Chidgey, A.5
Thurston, G.6
-
71
-
-
84862779038
-
Rapid thymic reconstitution following bone marrow transplantation in neonatal mice is VEGF-dependent
-
COI: 1:CAS:528:DC%2BC38Xjs1yiurs%3D, PID: 22281302
-
Cuddihy AR, Suterwala BT, Ge S, Kohn LA, Jang J, Andrade J, et al. Rapid thymic reconstitution following bone marrow transplantation in neonatal mice is VEGF-dependent. Biol Blood Marrow Transplant. 2012;18(5):683–9. doi:10.1016/j.bbmt.2012.01.006.
-
(2012)
Biol Blood Marrow Transplant
, vol.18
, Issue.5
, pp. 683-689
-
-
Cuddihy, A.R.1
Suterwala, B.T.2
Ge, S.3
Kohn, L.A.4
Jang, J.5
Andrade, J.6
-
72
-
-
84942525265
-
Thymic epithelial cells induced from pluripotent stem cells by a three-dimensional spheroid culture system regenerates functional T cells in nude mice
-
COI: 1:CAS:528:DC%2BC2MXhsFejtbnJ, PID: 26348437
-
Okabe M, Ito S, Nishio N, Tanaka Y, Isobe K. Thymic epithelial cells induced from pluripotent stem cells by a three-dimensional spheroid culture system regenerates functional T cells in nude mice. Cell Reprogram. 2015;17(5):368–75. doi:10.1089/cell.2015.0006.
-
(2015)
Cell Reprogram
, vol.17
, Issue.5
, pp. 368-375
-
-
Okabe, M.1
Ito, S.2
Nishio, N.3
Tanaka, Y.4
Isobe, K.5
-
73
-
-
84929095851
-
Young, proliferative thymic epithelial cells engraft and function in aging thymuses
-
COI: 1:CAS:528:DC%2BC2MXnsFOlurg%3D, PID: 25870244
-
Kim MJ, Miller CM, Shadrach JL, Wagers AJ, Serwold T. Young, proliferative thymic epithelial cells engraft and function in aging thymuses. J Immunol. 2015;194(10):4784–95. doi:10.4049/jimmunol.1403158.
-
(2015)
J Immunol
, vol.194
, Issue.10
, pp. 4784-4795
-
-
Kim, M.J.1
Miller, C.M.2
Shadrach, J.L.3
Wagers, A.J.4
Serwold, T.5
-
74
-
-
84907336905
-
Adult thymus contains FoxN1(−) epithelial stem cells that are bipotent for medullary and cortical thymic epithelial lineages
-
COI: 1:CAS:528:DC%2BC2cXhsVyhu7fM, PID: 25148026, This study shows the presence of bipotential TEC progenitors in adult thymus
-
Ucar A, Ucar O, Klug P, Matt S, Brunk F, Hofmann TG, et al. Adult thymus contains FoxN1(−) epithelial stem cells that are bipotent for medullary and cortical thymic epithelial lineages. Immunity. 2014;41(2):257–69. doi:10.1016/j.immuni.2014.07.005. This study shows the presence of bipotential TEC progenitors in adult thymus.
-
(2014)
Immunity
, vol.41
, Issue.2
, pp. 257-269
-
-
Ucar, A.1
Ucar, O.2
Klug, P.3
Matt, S.4
Brunk, F.5
Hofmann, T.G.6
-
75
-
-
33745516115
-
Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium
-
COI: 1:CAS:528:DC%2BD28XmtVSnsrk%3D, PID: 16791197
-
Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ. Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature. 2006;441(7096):988–91. doi:10.1038/nature04813.
-
(2006)
Nature
, vol.441
, Issue.7096
, pp. 988-991
-
-
Rossi, S.W.1
Jenkinson, W.E.2
Anderson, G.3
Jenkinson, E.J.4
-
76
-
-
38949110778
-
Identification of Plet-1 as a specific marker of early thymic epithelial progenitor cells
-
COI: 1:CAS:528:DC%2BD1cXht1Cjs7o%3D, PID: 18195351
-
Depreter MG, Blair NF, Gaskell TL, Nowell CS, Davern K, Pagliocca A, et al. Identification of Plet-1 as a specific marker of early thymic epithelial progenitor cells. Proc Natl Acad Sci U S A. 2008;105(3):961–6. doi:10.1073/pnas.0711170105.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.3
, pp. 961-966
-
-
Depreter, M.G.1
Blair, N.F.2
Gaskell, T.L.3
Nowell, C.S.4
Davern, K.5
Pagliocca, A.6
-
77
-
-
33745532385
-
Formation of a functional thymus initiated by a postnatal epithelial progenitor cell
-
COI: 1:CAS:528:DC%2BD28XmtVSns7w%3D, PID: 16791198
-
Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, Boehm T. Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature. 2006;441(7096):992–6. doi:10.1038/nature04850.
-
(2006)
Nature
, vol.441
, Issue.7096
, pp. 992-996
-
-
Bleul, C.C.1
Corbeaux, T.2
Reuter, A.3
Fisch, P.4
Monting, J.S.5
Boehm, T.6
-
78
-
-
33748448909
-
Thymus-homing precursors and the thymic microenvironment
-
COI: 1:CAS:528:DC%2BD28Xps1Cnt74%3D, PID: 16920024
-
Boehm T, Bleul CC. Thymus-homing precursors and the thymic microenvironment. Trends Immunol. 2006;27(10):477–84. doi:10.1016/j.it.2006.08.004.
-
(2006)
Trends Immunol
, vol.27
, Issue.10
, pp. 477-484
-
-
Boehm, T.1
Bleul, C.C.2
-
79
-
-
84902603107
-
Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration
-
PID: 24926024, COI: 1:CAS:528:DC%2BC2cXpsVGntrs%3D
-
Blanpain C, Fuchs E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science. 2014;344(6189):1242281. doi:10.1126/science.1242281.
-
(2014)
Science
, vol.344
, Issue.6189
, pp. 1242281
-
-
Blanpain, C.1
Fuchs, E.2
-
80
-
-
84951569365
-
Adult thymic epithelial cell (TEC) progenitors and TEC stem cells: models and mechanisms for TEC development and maintenance
-
PID: 26362014
-
Hamazaki Y. Adult thymic epithelial cell (TEC) progenitors and TEC stem cells: models and mechanisms for TEC development and maintenance. Eur J Immunol. 2015. doi:10.1002/eji.201545844.
-
(2015)
Eur J Immunol
-
-
Hamazaki, Y.1
-
81
-
-
84896523696
-
Adult thymic epithelium contains nonsenescent label-retaining cells
-
COI: 1:CAS:528:DC%2BC2cXivFOqs7c%3D, PID: 24477909, This study shows the presence of a population of putative TEC progenitors in adult thymus that can remain quiescent and are protected from sensescence
-
Dumont-Lagace M, Brochu S, St-Pierre C, Perreault C. Adult thymic epithelium contains nonsenescent label-retaining cells. J Immunol. 2014;192(5):2219–26. doi:10.4049/jimmunol.1302961. This study shows the presence of a population of putative TEC progenitors in adult thymus that can remain quiescent and are protected from sensescence.
-
(2014)
J Immunol
, vol.192
, Issue.5
, pp. 2219-2226
-
-
Dumont-Lagace, M.1
Brochu, S.2
St-Pierre, C.3
Perreault, C.4
-
82
-
-
84892386952
-
Label retention identifies a multipotent mesenchymal stem cell-like population in the postnatal thymus
-
PID: 24340075, COI: 1:CAS:528:DC%2BC2cXltl2qu7w%3D
-
Osada M, Singh VJ, Wu K, Sant’Angelo DB, Pezzano M. Label retention identifies a multipotent mesenchymal stem cell-like population in the postnatal thymus. PLoS One. 2013;8(12):e83024. doi:10.1371/journal.pone.0083024.
-
(2013)
PLoS One
, vol.8
, Issue.12
-
-
Osada, M.1
Singh, V.J.2
Wu, K.3
Sant’Angelo, D.B.4
Pezzano, M.5
-
83
-
-
33845239216
-
Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells
-
COI: 1:CAS:528:DC%2BD28Xht1Kgs7zJ, PID: 16896157
-
Gray DH, Seach N, Ueno T, Milton MK, Liston A, Lew AM, et al. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood. 2006;108(12):3777–85. doi:10.1182/blood-2006-02-004531.
-
(2006)
Blood
, vol.108
, Issue.12
, pp. 3777-3785
-
-
Gray, D.H.1
Seach, N.2
Ueno, T.3
Milton, M.K.4
Liston, A.5
Lew, A.M.6
-
84
-
-
84908356419
-
Multilineage potential and self-renewal define an epithelial progenitor cell population in the adult thymus
-
COI: 1:CAS:528:DC%2BC2cXhtlKmtbjJ, PID: 25131206, This study shows the presence of TEC progenitors in adult thymus
-
Wong K, Lister NL, Barsanti M, Lim JM, Hammett MV, Khong DM, et al. Multilineage potential and self-renewal define an epithelial progenitor cell population in the adult thymus. Cell Rep. 2014;8(4):1198–209. doi:10.1016/j.celrep.2014.07.029. This study shows the presence of TEC progenitors in adult thymus.
-
(2014)
Cell Rep
, vol.8
, Issue.4
, pp. 1198-1209
-
-
Wong, K.1
Lister, N.L.2
Barsanti, M.3
Lim, J.M.4
Hammett, M.V.5
Khong, D.M.6
-
85
-
-
84886782003
-
Thymus involution and regeneration: two sides of the same coin?
-
COI: 1:CAS:528:DC%2BC3sXhsVynurvN, PID: 24052146
-
Boehm T, Swann JB. Thymus involution and regeneration: two sides of the same coin? Nat Rev Immunol. 2013;13(11):831–8. doi:10.1038/nri3534.
-
(2013)
Nat Rev Immunol
, vol.13
, Issue.11
, pp. 831-838
-
-
Boehm, T.1
Swann, J.B.2
-
86
-
-
0034652018
-
Transgenic expression of cyclin D1 in thymic epithelial precursors promotes epithelial and T cell development
-
COI: 1:CAS:528:DC%2BD3cXhtlymtL0%3D, PID: 10657637
-
Klug DB, Crouch E, Carter C, Coghlan L, Conti CJ, Richie ER. Transgenic expression of cyclin D1 in thymic epithelial precursors promotes epithelial and T cell development. J Immunol. 2000;164(4):1881–8.
-
(2000)
J Immunol
, vol.164
, Issue.4
, pp. 1881-1888
-
-
Klug, D.B.1
Crouch, E.2
Carter, C.3
Coghlan, L.4
Conti, C.J.5
Richie, E.R.6
-
87
-
-
34247511981
-
p63 Is essential for the proliferative potential of stem cells in stratified epithelia
-
COI: 1:CAS:528:DC%2BD2sXlvVGktbk%3D, PID: 17482546
-
Senoo M, Pinto F, Crum CP, McKeon F. p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell. 2007;129(3):523–36. doi:10.1016/j.cell.2007.02.045.
-
(2007)
Cell
, vol.129
, Issue.3
, pp. 523-536
-
-
Senoo, M.1
Pinto, F.2
Crum, C.P.3
McKeon, F.4
-
88
-
-
34547513872
-
DeltaNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2
-
COI: 1:CAS:528:DC%2BD2sXosVClsbk%3D, PID: 17626181
-
Candi E, Rufini A, Terrinoni A, Giamboi-Miraglia A, Lena AM, Mantovani R, et al. DeltaNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc Natl Acad Sci U S A. 2007;104(29):11999–2004. doi:10.1073/pnas.0703458104.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, Issue.29
, pp. 11999-12004
-
-
Candi, E.1
Rufini, A.2
Terrinoni, A.3
Giamboi-Miraglia, A.4
Lena, A.M.5
Mantovani, R.6
-
89
-
-
84958267979
-
Foxn1 protein expression in the developing, aging, and regenerating thymus
-
PID: 26538393
-
Rode I, Martins VC, Kublbeck G, Maltry N, Tessmer C, Rodewald HR. Foxn1 protein expression in the developing, aging, and regenerating thymus. J Immunol. 2015. doi:10.4049/jimmunol.1502010.
-
(2015)
J Immunol
-
-
Rode, I.1
Martins, V.C.2
Kublbeck, G.3
Maltry, N.4
Tessmer, C.5
Rodewald, H.R.6
-
90
-
-
60249092412
-
Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner
-
COI: 1:CAS:528:DC%2BD1MXht1WnsL4%3D, PID: 18978204
-
Chen L, Xiao S, Manley NR. Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner. Blood. 2009;113(3):567–74. doi:10.1182/blood-2008-05-156265.
-
(2009)
Blood
, vol.113
, Issue.3
, pp. 567-574
-
-
Chen, L.1
Xiao, S.2
Manley, N.R.3
-
91
-
-
84881120386
-
Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development
-
COI: 1:CAS:528:DC%2BC3sXnvVGltb0%3D, PID: 23684540, This study, together with the study of Sun et al., demonstrates that human embryonic stem cells can be induced to differentiate into thymic epithelial progenitor-like cells
-
Parent AV, Russ HA, Khan IS, LaFlam TN, Metzger TC, Anderson MS, et al. Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development. Cell Stem Cell. 2013;13(2):219–29. doi:10.1016/j.stem.2013.04.004. This study, together with the study of Sun et al., demonstrates that human embryonic stem cells can be induced to differentiate into thymic epithelial progenitor-like cells.
-
(2013)
Cell Stem Cell
, vol.13
, Issue.2
, pp. 219-229
-
-
Parent, A.V.1
Russ, H.A.2
Khan, I.S.3
LaFlam, T.N.4
Metzger, T.C.5
Anderson, M.S.6
-
92
-
-
84881123537
-
-
Sun X, Xu J, Lu H, Liu W, Miao Z, Sui X, et al. Directed differentiation of human embryonic stem cells into thymic epithelial progenitor-like cells reconstitutes the thymic microenvironment in vivo. 13(2):230–6. doi:. This study, together with the study of Parent et al., demonstrates that human embryonic stem cells can be induced to differentiate into thymic epithelial progenitor-like cells
-
Sun X, Xu J, Lu H, Liu W, Miao Z, Sui X, et al. Directed differentiation of human embryonic stem cells into thymic epithelial progenitor-like cells reconstitutes the thymic microenvironment in vivo. Cell Stem Cell. 2013;13(2):230–6. doi:10.1016/j.stem.2013.06.014. This study, together with the study of Parent et al., demonstrates that human embryonic stem cells can be induced to differentiate into thymic epithelial progenitor-like cells.
-
(2013)
Cell Stem Cell
-
-
-
93
-
-
73349102785
-
Generation of thymic epithelial cell progenitors by mouse embryonic stem cells
-
COI: 1:CAS:528:DC%2BC3cXhsVCqt74%3D, PID: 19824081
-
Lai L, Jin J. Generation of thymic epithelial cell progenitors by mouse embryonic stem cells. Stem Cells. 2009;27(12):3012–20. doi:10.1002/stem.238.
-
(2009)
Stem Cells
, vol.27
, Issue.12
, pp. 3012-3020
-
-
Lai, L.1
Jin, J.2
-
94
-
-
84902281058
-
FOXN1 (GFP/w) reporter hESCs enable identification of integrin-beta4, HLA-DR, and EpCAM as markers of human PSC-derived FOXN1(+) thymic epithelial progenitors
-
COI: 1:CAS:528:DC%2BC2cXhtVWmt7vN
-
Soh CL, Giudice A, Jenny RA, Elliott DA, Hatzistavrou T, Micallef SJ, et al. FOXN1 (GFP/w) reporter hESCs enable identification of integrin-beta4, HLA-DR, and EpCAM as markers of human PSC-derived FOXN1(+) thymic epithelial progenitors. Stem Cell Rep. 2014;2(6):925–37. doi:10.1016/j.stemcr.2014.04.009.
-
(2014)
Stem Cell Rep
, vol.2
, Issue.6
, pp. 925-937
-
-
Soh, C.L.1
Giudice, A.2
Jenny, R.A.3
Elliott, D.A.4
Hatzistavrou, T.5
Micallef, S.J.6
-
95
-
-
79951942794
-
Differentiation of induced pluripotent stem cells to thymic epithelial cells by phenotype
-
PID: 20680027
-
Inami Y, Yoshikai T, Ito S, Nishio N, Suzuki H, Sakurai H, et al. Differentiation of induced pluripotent stem cells to thymic epithelial cells by phenotype. Immunol Cell Biol. 2011;89(2):314–21. doi:10.1038/icb.2010.96.
-
(2011)
Immunol Cell Biol
, vol.89
, Issue.2
, pp. 314-321
-
-
Inami, Y.1
Yoshikai, T.2
Ito, S.3
Nishio, N.4
Suzuki, H.5
Sakurai, H.6
-
96
-
-
84906865436
-
An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts
-
COI: 1:CAS:528:DC%2BC2cXhsVSqtLbI, PID: 25150981, This study shows that forced expression of Foxn1 can transdifferentiate mouse embryonic fibroblasts into thymic epithelial cell (TEC)-like cells that can support T-cell development, highlighting an alternative source of TECs for thymus bioengineering
-
Bredenkamp N, Ulyanchenko S, O’Neill KE, Manley NR, Vaidya HJ, Blackburn CC. An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts. Nat Cell Biol. 2014;16(9):902–8. doi:10.1038/ncb3023. This study shows that forced expression of Foxn1 can transdifferentiate mouse embryonic fibroblasts into thymic epithelial cell (TEC)-like cells that can support T-cell development, highlighting an alternative source of TECs for thymus bioengineering.
-
(2014)
Nat Cell Biol
, vol.16
, Issue.9
, pp. 902-908
-
-
Bredenkamp, N.1
Ulyanchenko, S.2
O’Neill, K.E.3
Manley, N.R.4
Vaidya, H.J.5
Blackburn, C.C.6
-
97
-
-
84898727454
-
Regeneration of the aged thymus by a single transcription factor
-
COI: 1:CAS:528:DC%2BC2cXoslOmu74%3D, PID: 24715454
-
Bredenkamp N, Nowell CS, Blackburn CC. Regeneration of the aged thymus by a single transcription factor. Development. 2014;141(8):1627–37. doi:10.1242/dev.103614.
-
(2014)
Development
, vol.141
, Issue.8
, pp. 1627-1637
-
-
Bredenkamp, N.1
Nowell, C.S.2
Blackburn, C.C.3
-
98
-
-
84861013040
-
Human FOXN1-deficiency is associated with alphabeta double-negative and FoxP3+ T-cell expansions that are distinctly modulated upon thymic transplantation
-
COI: 1:CAS:528:DC%2BC38Xns1GhtLw%3D, PID: 22590644
-
Albuquerque AS, Marques JG, Silva SL, Ligeiro D, Devlin BH, Dutrieux J, et al. Human FOXN1-deficiency is associated with alphabeta double-negative and FoxP3+ T-cell expansions that are distinctly modulated upon thymic transplantation. PLoS One. 2012;7(5):e37042. doi:10.1371/journal.pone.0037042.
-
(2012)
PLoS One
, vol.7
, Issue.5
-
-
Albuquerque, A.S.1
Marques, J.G.2
Silva, S.L.3
Ligeiro, D.4
Devlin, B.H.5
Dutrieux, J.6
-
99
-
-
84923207621
-
Routine thymectomy in congenital cardiac surgery changes adaptive immunity without clinical relevance
-
PID: 25320142
-
Roosen J, Oosterlinck W, Meyns B. Routine thymectomy in congenital cardiac surgery changes adaptive immunity without clinical relevance. Interact Cardiovasc Thorac Surg. 2015;20(1):101–6. doi:10.1093/icvts/ivu343.
-
(2015)
Interact Cardiovasc Thorac Surg
, vol.20
, Issue.1
, pp. 101-106
-
-
Roosen, J.1
Oosterlinck, W.2
Meyns, B.3
-
100
-
-
4944225002
-
How does neonatal thymectomy affect the immune system?
-
PID: 15529556
-
Turan T, Turan A, Arslan C, Kinoglu B, Sarioglu T. How does neonatal thymectomy affect the immune system? Acta Cardiol. 2004;59(5):511–3.
-
(2004)
Acta Cardiol
, vol.59
, Issue.5
, pp. 511-513
-
-
Turan, T.1
Turan, A.2
Arslan, C.3
Kinoglu, B.4
Sarioglu, T.5
-
101
-
-
77957354830
-
For neonates undergoing cardiac surgery does thymectomy as opposed to thymic preservation have any adverse immunological consequences?
-
PID: 20576655
-
Afifi A, Raja SG, Pennington DJ, Tsang VT. For neonates undergoing cardiac surgery does thymectomy as opposed to thymic preservation have any adverse immunological consequences? Interact Cardiovasc Thorac Surg. 2010;11(3):287–91. doi:10.1510/icvts.2010.237172.
-
(2010)
Interact Cardiovasc Thorac Surg
, vol.11
, Issue.3
, pp. 287-291
-
-
Afifi, A.1
Raja, S.G.2
Pennington, D.J.3
Tsang, V.T.4
-
102
-
-
80355135138
-
Spectrum of cancer risk among US solid organ transplant recipients
-
COI: 1:CAS:528:DC%2BC3MXhsVKnsb7L, PID: 22045767
-
Engels EA, Pfeiffer RM, Fraumeni Jr JF, Kasiske BL, Israni AK, Snyder JJ, et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA. 2011;306(17):1891–901. doi:10.1001/jama.2011.1592.
-
(2011)
JAMA
, vol.306
, Issue.17
, pp. 1891-1901
-
-
Engels, E.A.1
Pfeiffer, R.M.2
Fraumeni, J.F.3
Kasiske, B.L.4
Israni, A.K.5
Snyder, J.J.6
-
103
-
-
0021112640
-
Nucleotide sequences of complementary deoxyribonucleic acids for the pro alpha 1 chain of human type I procollagen. Statistical evaluation of structures that are conserved during evolution
-
COI: 1:CAS:528:DyaL3sXlsFeisrc%3D, PID: 6689127
-
Bernard MP, Chu ML, Myers JC, Ramirez F, Eikenberry EF, Prockop DJ. Nucleotide sequences of complementary deoxyribonucleic acids for the pro alpha 1 chain of human type I procollagen. Statistical evaluation of structures that are conserved during evolution. Biochemistry. 1983;22(22):5213–23.
-
(1983)
Biochemistry
, vol.22
, Issue.22
, pp. 5213-5223
-
-
Bernard, M.P.1
Chu, M.L.2
Myers, J.C.3
Ramirez, F.4
Eikenberry, E.F.5
Prockop, D.J.6
-
104
-
-
77952752742
-
Lentiviral vectors in gene therapy: their current status and future potential
-
COI: 1:CAS:528:DC%2BC3cXjtFyjtr4%3D
-
Escors D, Breckpot K. Lentiviral vectors in gene therapy: their current status and future potential. Arch Immunol Ther Exp (Warsz). 2010;58(2):107–19. doi:10.1007/s00005-010-0063-4.
-
(2010)
Arch Immunol Ther Exp (Warsz)
, vol.58
, Issue.2
, pp. 107-119
-
-
Escors, D.1
Breckpot, K.2
-
105
-
-
84929484928
-
The impact of immunosenescence on humoral immune response variation after influenza A/H1N1 vaccination in older subjects
-
PID: 25816015, COI: 1:CAS:528:DC%2BC2MXhsFahsrnO
-
Haralambieva IH, Painter SD, Kennedy RB, Ovsyannikova IG, Lambert ND, Goergen KM, et al. The impact of immunosenescence on humoral immune response variation after influenza A/H1N1 vaccination in older subjects. PLoS One. 2015;10(3):e0122282. doi:10.1371/journal.pone.0122282.
-
(2015)
PLoS One
, vol.10
, Issue.3
-
-
Haralambieva, I.H.1
Painter, S.D.2
Kennedy, R.B.3
Ovsyannikova, I.G.4
Lambert, N.D.5
Goergen, K.M.6
-
106
-
-
77955655332
-
Immune memory and aging: an infinite or finite resource?
-
COI: 1:CAS:528:DC%2BC3cXhtVersbjE, PID: 20674320
-
Nikolich-Zugich J, Rudd BD. Immune memory and aging: an infinite or finite resource? Curr Opin Immunol. 2010;22(4):535–40. doi:10.1016/j.coi.2010.06.011.
-
(2010)
Curr Opin Immunol
, vol.22
, Issue.4
, pp. 535-540
-
-
Nikolich-Zugich, J.1
Rudd, B.D.2
-
107
-
-
84926470559
-
Developing vaccines for an aging population
-
PID: 25834107
-
Black S, De Gregorio E, Rappuoli R. Developing vaccines for an aging population. Sci Transl Med. 2015;7(281):281ps8. doi:10.1126/scitranslmed.aaa0722.
-
(2015)
Sci Transl Med
, vol.7
, Issue.281
, pp. 281ps8
-
-
Black, S.1
De Gregorio, E.2
Rappuoli, R.3
-
108
-
-
33847640493
-
Immunosenescence: emerging challenges for an ageing population
-
COI: 1:CAS:528:DC%2BD2sXktVOmtL4%3D, PID: 17313487
-
Aw D, Silva AB, Palmer DB. Immunosenescence: emerging challenges for an ageing population. Immunology. 2007;120(4):435–46. doi:10.1111/j.1365-2567.2007.02555.x.
-
(2007)
Immunology
, vol.120
, Issue.4
, pp. 435-446
-
-
Aw, D.1
Silva, A.B.2
Palmer, D.B.3
-
109
-
-
60549106099
-
Clonal expansions and loss of receptor diversity in the naive CD8 T cell repertoire of aged mice
-
COI: 1:CAS:528:DC%2BD1MXhsVKqsA%3D%3D, PID: 19124721
-
Ahmed M, Lanzer KG, Yager EJ, Adams PS, Johnson LL, Blackman MA. Clonal expansions and loss of receptor diversity in the naive CD8 T cell repertoire of aged mice. J Immunol. 2009;182(2):784–92.
-
(2009)
J Immunol
, vol.182
, Issue.2
, pp. 784-792
-
-
Ahmed, M.1
Lanzer, K.G.2
Yager, E.J.3
Adams, P.S.4
Johnson, L.L.5
Blackman, M.A.6
-
110
-
-
84955618629
-
1-year outcomes with the absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis
-
Stone GW, Gao R, Kimura T, Kereiakes DJ, Ellis SG, Onuma Y, et al. 1-year outcomes with the absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis. Lancet. 2016. doi:10.1016/S0140-6736(15)01039-9.
-
(2016)
Lancet
-
-
Stone, G.W.1
Gao, R.2
Kimura, T.3
Kereiakes, D.J.4
Ellis, S.G.5
Onuma, Y.6
-
111
-
-
84901269957
-
1-year clinical outcomes of diabetic patients treated with everolimus-eluting bioresorbable vascular scaffolds: a pooled analysis of the ABSORB and the SPIRIT trials
-
Muramatsu T, Onuma Y, van Geuns RJ, Chevalier B, Patel TM, Seth A, et al. 1-year clinical outcomes of diabetic patients treated with everolimus-eluting bioresorbable vascular scaffolds: a pooled analysis of the ABSORB and the SPIRIT trials. J Am Coll Cardiol Intv. 2014;7(5):482–93. doi:10.1016/j.jcin.2014.01.155.
-
(2014)
J Am Coll Cardiol Intv
, vol.7
, Issue.5
, pp. 482-493
-
-
Muramatsu, T.1
Onuma, Y.2
van Geuns, R.J.3
Chevalier, B.4
Patel, T.M.5
Seth, A.6
-
112
-
-
84938950081
-
Clinical implementation of islet transplantation: a current assessment
-
PID: 26084669
-
Bottino R, Trucco M. Clinical implementation of islet transplantation: a current assessment. Pediatr Diabetes. 2015;16(6):393–401. doi:10.1111/pedi.12287.
-
(2015)
Pediatr Diabetes
, vol.16
, Issue.6
, pp. 393-401
-
-
Bottino, R.1
Trucco, M.2
-
113
-
-
84929359502
-
Factors associated with islet yield and insulin independence after total pancreatectomy and islet cell autotransplantation in patients with chronic pancreatitis utilizing off-site islet isolation: Cleveland clinic experience
-
COI: 1:CAS:528:DC%2BC2MXpvFGiurc%3D, PID: 25781357
-
Johnston PC, Lin YK, Walsh RM, Bottino R, Stevens TK, Trucco M, et al. Factors associated with islet yield and insulin independence after total pancreatectomy and islet cell autotransplantation in patients with chronic pancreatitis utilizing off-site islet isolation: Cleveland clinic experience. J Clin Endocrinol Metab. 2015;100(5):1765–70. doi:10.1210/jc.2014-4298.
-
(2015)
J Clin Endocrinol Metab
, vol.100
, Issue.5
, pp. 1765-1770
-
-
Johnston, P.C.1
Lin, Y.K.2
Walsh, R.M.3
Bottino, R.4
Stevens, T.K.5
Trucco, M.6
-
114
-
-
84879832653
-
Future of medicare immunosuppressive drug coverage for kidney transplant recipients in the United States
-
PID: 23559679
-
Tanriover B, Stone PW, Mohan S, Cohen DJ, Gaston RS. Future of medicare immunosuppressive drug coverage for kidney transplant recipients in the United States. Clin J Am Soc Nephrol. 2013;8(7):1258–66. doi:10.2215/CJN.09440912.
-
(2013)
Clin J Am Soc Nephrol
, vol.8
, Issue.7
, pp. 1258-1266
-
-
Tanriover, B.1
Stone, P.W.2
Mohan, S.3
Cohen, D.J.4
Gaston, R.S.5
-
115
-
-
84941365920
-
Future economics of liver transplantation: a 20-year cost modeling forecast and the prospect of bioengineering autologous liver grafts
-
PID: 26177505, COI: 1:CAS:528:DC%2BC2MXhtlyksr%2FE
-
Habka D, Mann D, Landes R, Soto-Gutierrez A. Future economics of liver transplantation: a 20-year cost modeling forecast and the prospect of bioengineering autologous liver grafts. PLoS One. 2015;10(7):e0131764. doi:10.1371/journal.pone.0131764.
-
(2015)
PLoS One
, vol.10
, Issue.7
-
-
Habka, D.1
Mann, D.2
Landes, R.3
Soto-Gutierrez, A.4
-
116
-
-
67649396090
-
Thymic involution and immune reconstitution
-
COI: 1:CAS:528:DC%2BD1MXotF2gt7w%3D, PID: 19540807
-
Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R, Sempowski GD. Thymic involution and immune reconstitution. Trends Immunol. 2009;30(7):366–73. doi:10.1016/j.it.2009.04.003.
-
(2009)
Trends Immunol
, vol.30
, Issue.7
, pp. 366-373
-
-
Lynch, H.E.1
Goldberg, G.L.2
Chidgey, A.3
Van den Brink, M.R.4
Boyd, R.5
Sempowski, G.D.6
|