-
3
-
-
85083954311
-
Variational auto-encoded deep Gaussian processes
-
Dai, Zhenwen, Damianou, Andreas, González, Javier, and Lawrence, Neil. Variational auto-encoded deep Gaussian processes. In 4th International Conference on Learning Representations, 2016.
-
(2016)
4th International Conference on Learning Representations
-
-
Dai, Z.1
Damianou, A.2
González, J.3
Lawrence, N.4
-
7
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demsar, Jancz. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7:1-30, 2006.
-
(2006)
The Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
8
-
-
84998961865
-
Avoiding pathologies in very deep networks
-
Duvenaud, David, Rippel, Oren, Adams, Ryan P., and Ghahramani, Zoubin. Avoiding pathologies in very deep networks. In 17th International Conference on Artificial Intelligence and Statistics, 2014.
-
(2014)
17th International Conference on Artificial Intelligence and Statistics
-
-
Duvenaud, D.1
Rippel, O.2
Adams, R.P.3
Ghahramani, Z.4
-
10
-
-
84867040604
-
Gaussian process priors with uncertain inputs - Application to multiple-step ahead time series forecasting
-
Girard, Agathe, Rasmussen, Carl Edward, Quinonero-Candela, Joaquin, and Murray-Smith, Roderick. Gaussian process priors with uncertain inputs - application to multiple-step ahead time series forecasting. In Advances in Neural Information Processing Systems 15, pp. 529-536, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 529-536
-
-
Girard, A.1
Rasmussen, C.E.2
Quinonero-Candela, J.3
Murray-Smith, R.4
-
11
-
-
85162557101
-
Practical variational inference for neural networks
-
Graves, Alex. Practical variational inference for neural networks. In Advances in Neural Information Processing Systems 25, pp. 2348-2356, 2011.
-
(2011)
Advances in Neural Information Processing Systems
, vol.25
, pp. 2348-2356
-
-
Graves, A.1
-
12
-
-
80052378200
-
The Harvard clean energy project: Large-scale computational screening and design of organic photovoltaics on the world community grid
-
Hachmann, Johannes, Olivares-Amaya, Roberto, Atahan-Evrenk, Sule, Amador-Bedolla, Carlos, Sánchez-Carrera, Roel S, Gold-Parker, Aryeh, Vogt, Leslie, Brockway, Anna M, and Aspuru-Guzik, Alán. The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid. The Journal of Physical Chemistry Letters, 2(17):2241-2251, 2011.
-
(2011)
The Journal of Physical Chemistry Letters
, vol.2
, Issue.17
, pp. 2241-2251
-
-
Hachmann, J.1
Olivares-Amaya, R.2
Atahan-Evrenk, S.3
Amador-Bedolla, C.4
Sánchez-Carrera, R.S.5
Gold-Parker, A.6
Vogt, L.7
Brockway, A.M.8
Aspuru-Guzik, A.9
-
17
-
-
0033720671
-
A nonlinear filtering algorithm based on an approximation of the conditional distribution
-
Mar.
-
Kushncr, H. J. and Budhiraja, A. S. A nonlinear filtering algorithm based on an approximation of the conditional distribution. IEEE Transactions on Automatic Control, 45(3):580-585, Mar. 2000.
-
(2000)
IEEE Transactions on Automatic Control
, vol.45
, Issue.3
, pp. 580-585
-
-
Kushncr, H.J.1
Budhiraja, A.S.2
-
20
-
-
84965104740
-
Stochastic expectation propagation
-
Li, Yingzhen, Hernández-Lobato, José Miguel, and Turner, Richard E. Stochastic expectation propagation. In Advances in Neural Information Processing Systems 29, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, vol.29
-
-
Li, Y.1
Hernández-Lobato, J.M.2
Turner, R.E.3
-
24
-
-
84946476177
-
Learning from the Harvard clean energy project: The use of neural networks to accelerate materials discovery
-
Pyzer-Knapp, Edward O, Li, Kewei, and Aspuru-Guzik, Alan. Learning from the Harvard clean energy project: The use of neural networks to accelerate materials discovery. Advanced Functional Materials, 25(41):6495-6502, 2015.
-
(2015)
Advanced Functional Materials
, vol.25
, Issue.41
, pp. 6495-6502
-
-
Pyzer-Knapp, E.O.1
Li, K.2
Aspuru-Guzik, A.3
-
27
-
-
43449137394
-
-
Technical report, Department of EECS, University of California at Berkeley
-
Seeger, Matthias. Expectation propagation for exponential families. Technical report, Department of EECS, University of California at Berkeley, 2007.
-
(2007)
Expectation Propagation for Exponential Families
-
-
Seeger, M.1
-
29
-
-
84898943255
-
Warped Gaussian processes
-
Cambridge, MA, USA
-
Snelson, Edward, Rasmussen, Carl Edward, and Ghahramani, Zoubin. Warped Gaussian processes. In Advances in Neural Information Processing Systems 17, pp. 337-344, Cambridge, MA, USA, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, vol.17
, pp. 337-344
-
-
Snelson, E.1
Rasmussen, C.E.2
Ghahramani, Z.3
-
30
-
-
0003420416
-
-
MIT Press, Cambridge, MA, USA, 1st edition
-
Sutton, Richard S. and Barto, Andrew G. Introduction to Reinforcement Learning. MIT Press, Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.
-
(1998)
Introduction to Reinforcement Learning
-
-
Sutton, R.S.1
Barto, A.G.2
-
33
-
-
84923421297
-
Two problems with variational expectation maximisation for time-series models
-
Barber, D., Cemgil, T, and Chiappa, S. eds., chapter 5, Cambridge University Press
-
Turner, R. E. and Sahani, M. Two problems with variational expectation maximisation for time-series models. In Barber, D., Cemgil, T, and Chiappa, S. (eds.), Bayesian Time series models, chapter 5, pp. 109-130. Cambridge University Press, 2011.
-
(2011)
Bayesian Time Series Models
, pp. 109-130
-
-
Turner, R.E.1
Sahani, M.2
-
37
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar, Jancz. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7:1-30, 2006.
-
(2006)
The Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demšar, J.1
|