메뉴 건너뛰기




Volumn 111, Issue , 2015, Pages 562-579

Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge

(50)  Bron, Esther E a   Smits, Marion a   van der Flier, Wiesje M b,c   Vrenken, Hugo c   Barkhof, Frederik c   Scheltens, Philip b   Papma, Janne M a   Steketee, Rebecca M E a   Méndez Orellana, Carolina a   Meijboom, Rozanna a   Pinto, Madalena d   Meireles, Joana R d   Garrett, Carolina d,e   Bastos Leite, António J e   Abdulkadir, Ahmed f,g   Ronneberger, Olaf g   Amoroso, Nicola h,i   Bellotti, Roberto h,i   Cárdenas Peña, David j   Álvarez Meza, Andrés M j   more..


Author keywords

Alzheimer's disease; Challenge; Classification; Computer aided diagnosis; Mild cognitive impairment; Structural MRI

Indexed keywords

AGED; ALGORITHM; ALZHEIMER DISEASE; CLASSIFICATION; CLINICAL TRIAL; COMPARATIVE STUDY; COMPUTER ASSISTED DIAGNOSIS; EVALUATION STUDY; FEMALE; HUMAN; MALE; MIDDLE AGED; MILD COGNITIVE IMPAIRMENT; MULTICENTER STUDY; NUCLEAR MAGNETIC RESONANCE IMAGING; PROCEDURES; SENSITIVITY AND SPECIFICITY; STANDARDS; VERY ELDERLY;

EID: 84939435519     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2015.01.048     Document Type: Article
Times cited : (297)

References (76)
  • 2
    • 84884125608 scopus 로고    scopus 로고
    • How early can we predict Alzheimer's disease using computational anatomy?
    • Adaszewski S., Dukart J., Kherif F., Frackowiak R., Draganski B. How early can we predict Alzheimer's disease using computational anatomy?. Neurobiol. Aging 2013, 34(12):2815-2826.
    • (2013) Neurobiol. Aging , vol.34 , Issue.12 , pp. 2815-2826
    • Adaszewski, S.1    Dukart, J.2    Kherif, F.3    Frackowiak, R.4    Draganski, B.5
  • 4
    • 84910005783 scopus 로고    scopus 로고
    • 2014 Alzheimer's disease facts and figures
    • Alzheimer's Association 2014 Alzheimer's disease facts and figures. Alzheimers Dement. 2014, 10(2):e47-e92.
    • (2014) Alzheimers Dement. , vol.10 , Issue.2 , pp. e47-e92
  • 6
    • 84875435187 scopus 로고    scopus 로고
    • Cerebral blood flow measured with 3D pseudocontinuous arterial spin labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity
    • Binnewijzend M.A.A., Kuijer J.P.A., Benedictus M.R., van der Flier W.M., Wink A.M., Wattjes M.P., van Berckel B.N.M., Scheltens P., Barkhof F. Cerebral blood flow measured with 3D pseudocontinuous arterial spin labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology 2013, 267(1):221-230.
    • (2013) Radiology , vol.267 , Issue.1 , pp. 221-230
    • Binnewijzend, M.A.A.1    Kuijer, J.P.A.2    Benedictus, M.R.3    van der Flier, W.M.4    Wink, A.M.5    Wattjes, M.P.6    van Berckel, B.N.M.7    Scheltens, P.8    Barkhof, F.9
  • 10
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
    • Cuingnet R., Gerardin E., Tessieras J., Auzias G., Lehéricy S., Habert J., Chupin M., Benali J., Colliot O. Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 2011, 56(2):766-781.
    • (2011) Neuroimage , vol.56 , Issue.2 , pp. 766-781
    • Cuingnet, R.1    Gerardin, E.2    Tessieras, J.3    Auzias, G.4    Lehéricy, S.5    Habert, J.6    Chupin, M.7    Benali, J.8    Colliot, O.9
  • 11
    • 44649136049 scopus 로고    scopus 로고
    • Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI
    • Davatzikos C., Resnick S.M., Wu X., Parmpi P., Clark C.M. Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. Neuroimage 2008, 41(4):1220-1227.
    • (2008) Neuroimage , vol.41 , Issue.4 , pp. 1220-1227
    • Davatzikos, C.1    Resnick, S.M.2    Wu, X.3    Parmpi, P.4    Clark, C.M.5
  • 12
    • 39749189507 scopus 로고    scopus 로고
    • Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging
    • Davatzikos C., Fan Y., Wu X., Shen D., Resnick S.M. Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging. Neurobiol. Aging 2008, 29(4):514-523.
    • (2008) Neurobiol. Aging , vol.29 , Issue.4 , pp. 514-523
    • Davatzikos, C.1    Fan, Y.2    Wu, X.3    Shen, D.4    Resnick, S.M.5
  • 13
    • 0008411625 scopus 로고    scopus 로고
    • Statistical tests for comparing supervised classification learning algorithms
    • Dietterich T. Statistical tests for comparing supervised classification learning algorithms. Oregon State University Technical Report 1996, 1:1-24.
    • (1996) Oregon State University Technical Report , vol.1 , pp. 1-24
    • Dietterich, T.1
  • 15
    • 33749848175 scopus 로고    scopus 로고
    • Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI
    • Du A., Jahng G., Hayasaka S., Kramer J.H. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 2006, 67(7):1215-1220.
    • (2006) Neurology , vol.67 , Issue.7 , pp. 1215-1220
    • Du, A.1    Jahng, G.2    Hayasaka, S.3    Kramer, J.H.4
  • 20
    • 84916608467 scopus 로고    scopus 로고
    • Structural imaging biomarkers of Alzheimer's disease: predicting disease progression
    • Eskildsen S.F., Coupé P., Fonov V.S., Pruessner J.C., Collins D.L. Structural imaging biomarkers of Alzheimer's disease: predicting disease progression. Neurobiol. Aging 2015, 36(Suppl. 1):S23-S31.
    • (2015) Neurobiol. Aging , vol.36 , pp. S23-S31
    • Eskildsen, S.F.1    Coupé, P.2    Fonov, V.S.3    Pruessner, J.C.4    Collins, D.L.5
  • 21
    • 84921491253 scopus 로고    scopus 로고
    • Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging
    • Falahati F., Westman E., Simmons A. Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging. J. Alzheimers Dis. 2014, 41(3):685-708.
    • (2014) J. Alzheimers Dis. , vol.41 , Issue.3 , pp. 685-708
    • Falahati, F.1    Westman, E.2    Simmons, A.3
  • 23
    • 38749113910 scopus 로고    scopus 로고
    • Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline
    • Fan Y., Batmanghelich N., Clark C.M., Davatzikos C. Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage 2008, 39(4):1731-1743.
    • (2008) Neuroimage , vol.39 , Issue.4 , pp. 1731-1743
    • Fan, Y.1    Batmanghelich, N.2    Clark, C.M.3    Davatzikos, C.4
  • 24
    • 44249088535 scopus 로고    scopus 로고
    • Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study
    • Fan Y., Resnick S.M., Wu X., Davatzikos C. Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study. Neuroimage 2008, 41(2):277-285.
    • (2008) Neuroimage , vol.41 , Issue.2 , pp. 277-285
    • Fan, Y.1    Resnick, S.M.2    Wu, X.3    Davatzikos, C.4
  • 25
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27(8):861-874.
    • (2006) Pattern Recogn. Lett. , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 26
    • 84862997809 scopus 로고    scopus 로고
    • FreeSurfer
    • Fischl B. FreeSurfer. Neuroimage 2012, 62(2):774-781.
    • (2012) Neuroimage , vol.62 , Issue.2 , pp. 774-781
    • Fischl, B.1
  • 28
    • 79952710115 scopus 로고    scopus 로고
    • Harmonization of magnetic resonance-based manual hippocampal segmentation: a mandatory step for wide clinical use
    • Frisoni G.B., Jack C.R. Harmonization of magnetic resonance-based manual hippocampal segmentation: a mandatory step for wide clinical use. Alzheimers Dement. 2011, 7(2):171-174.
    • (2011) Alzheimers Dement. , vol.7 , Issue.2 , pp. 171-174
    • Frisoni, G.B.1    Jack, C.R.2
  • 29
    • 84877323945 scopus 로고    scopus 로고
    • Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification
    • Gaonkar B., Davatzikos C. Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification. Neuroimage 2013, 78:270-283.
    • (2013) Neuroimage , vol.78 , pp. 270-283
    • Gaonkar, B.1    Davatzikos, C.2
  • 30
    • 84868215748 scopus 로고    scopus 로고
    • Random forest-based similarity measures for multi-modal classification of Alzheimer's disease
    • Gray K.R., Aljabar P., Heckemann R.A., Hammers A., Rueckert D. Random forest-based similarity measures for multi-modal classification of Alzheimer's disease. Neuroimage 2013, 65:167-175.
    • (2013) Neuroimage , vol.65 , pp. 167-175
    • Gray, K.R.1    Aljabar, P.2    Heckemann, R.A.3    Hammers, A.4    Rueckert, D.5
  • 31
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the ROC curve for multiple class classification problems
    • Hand D.J., Till R.J. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach. Learn. 2001, 45:171-186.
    • (2001) Mach. Learn. , vol.45 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 34
    • 79956076567 scopus 로고    scopus 로고
    • Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
    • Jack C.R., Albert M.S., Knopman D.S., McKhann G.M., Sperling R.A., Carrillo M.C., Thies B., Phelps C.H. Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011, 7(3):257-262.
    • (2011) Alzheimers Dement. , vol.7 , Issue.3 , pp. 257-262
    • Jack, C.R.1    Albert, M.S.2    Knopman, D.S.3    McKhann, G.M.4    Sperling, R.A.5    Carrillo, M.C.6    Thies, B.7    Phelps, C.H.8
  • 41
    • 84856829701 scopus 로고    scopus 로고
    • Improved classification of Alzheimer's disease data via removal of nuisance variability
    • (e31112-e31118)
    • Koikkalainen J., Pölönen H., Mattila J., van Gils M., Soininen H., Lötjönen J. Improved classification of Alzheimer's disease data via removal of nuisance variability. PLoS One 2012, 7(2). (e31112-e31118).
    • (2012) PLoS One , vol.7 , Issue.2
    • Koikkalainen, J.1    Pölönen, H.2    Mattila, J.3    van Gils, M.4    Soininen, H.5    Lötjönen, J.6
  • 42
  • 43
    • 84876476870 scopus 로고    scopus 로고
    • Multivariate classification of patients with Alzheimer's and dementia with Lewy bodies using high-dimensional cortical thickness measurements: an MRI surface-based morphometric study
    • Lebedev A.V., Westman E., Beyer M.K., Kramberger M.G., Aguilar C., Pirtosek Z., Aarsland D. Multivariate classification of patients with Alzheimer's and dementia with Lewy bodies using high-dimensional cortical thickness measurements: an MRI surface-based morphometric study. J. Neurol. 2013, 260(4):1104-1115.
    • (2013) J. Neurol. , vol.260 , Issue.4 , pp. 1104-1115
    • Lebedev, A.V.1    Westman, E.2    Beyer, M.K.3    Kramberger, M.G.4    Aguilar, C.5    Pirtosek, Z.6    Aarsland, D.7
  • 45
    • 84939894178 scopus 로고    scopus 로고
    • IT infrastructure to support the secondary use of routinely acquired clinical imaging data for research
    • Leung K.Y.E., van der Lijn F., Vrooman H.A., Sturkenboom M.C.J.M., Niessen W.J. IT infrastructure to support the secondary use of routinely acquired clinical imaging data for research. Neuroinformatics 2015, 13(1):65-81.
    • (2015) Neuroinformatics , vol.13 , Issue.1 , pp. 65-81
    • Leung, K.Y.E.1    van der Lijn, F.2    Vrooman, H.A.3    Sturkenboom, M.C.J.M.4    Niessen, W.J.5
  • 50
    • 0021271971 scopus 로고
    • Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease
    • McKhann G.M., Drachman D., Folstein M., Katzman R., Price D., Stadlan E.M. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology 1984, 34(7):939-944.
    • (1984) Neurology , vol.34 , Issue.7 , pp. 939-944
    • McKhann, G.M.1    Drachman, D.2    Folstein, M.3    Katzman, R.4    Price, D.5    Stadlan, E.M.6
  • 52
    • 58149386194 scopus 로고    scopus 로고
    • Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI
    • Misra C., Fan Y., Davatzikos C. Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage 2009, 44(4):1415-1422.
    • (2009) Neuroimage , vol.44 , Issue.4 , pp. 1415-1422
    • Misra, C.1    Fan, Y.2    Davatzikos, C.3
  • 55
    • 84858959493 scopus 로고    scopus 로고
    • Battle against Alzheimer's disease: the scope and potential value of magnetic resonance imaging biomarkers
    • Paquerault S. Battle against Alzheimer's disease: the scope and potential value of magnetic resonance imaging biomarkers. Acad. Radiol. 2012, 19:509-511.
    • (2012) Acad. Radiol. , vol.19 , pp. 509-511
    • Paquerault, S.1
  • 56
    • 4544335597 scopus 로고    scopus 로고
    • Mild cognitive impairment as a diagnostic entity
    • Petersen R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004, 256(3):183-194.
    • (2004) J. Intern. Med. , vol.256 , Issue.3 , pp. 183-194
    • Petersen, R.C.1
  • 60
    • 0041992571 scopus 로고    scopus 로고
    • Well-trained PETs: improving probability estimation trees
    • Stern School of Business, New York University, New York, NY, USA
    • Provost F., Domingos P. Well-trained PETs: improving probability estimation trees. Technical Report; CeDER Working Paper #IS-00-04 2001, Stern School of Business, New York University, New York, NY, USA.
    • (2001) Technical Report; CeDER Working Paper #IS-00-04
    • Provost, F.1    Domingos, P.2
  • 61
    • 84904420534 scopus 로고    scopus 로고
    • Three-class differential diagnosis among Alzheimer disease, frontotemporal dementia, and controls
    • Raamana P.R., Rosen H., Miller B., Weiner M.W., Wang L., Beg M.F. Three-class differential diagnosis among Alzheimer disease, frontotemporal dementia, and controls. Front. Neurol. 2014, 5(71):1-15.
    • (2014) Front. Neurol. , vol.5 , Issue.71 , pp. 1-15
    • Raamana, P.R.1    Rosen, H.2    Miller, B.3    Weiner, M.W.4    Wang, L.5    Beg, M.F.6
  • 62
    • 33645908165 scopus 로고    scopus 로고
    • Laplace-Beltrami spectra as 'shape-DNA' of surfaces and solids
    • Reuter M., Wolter F.E., Peinecke N. Laplace-Beltrami spectra as 'shape-DNA' of surfaces and solids. Comput. Aided Des. 2006, 38(4):342-366.
    • (2006) Comput. Aided Des. , vol.38 , Issue.4 , pp. 342-366
    • Reuter, M.1    Wolter, F.E.2    Peinecke, N.3
  • 64
    • 84933047930 scopus 로고    scopus 로고
    • Clinical prediction from structural brain MRI scans: a large-scale empirical study
    • Sabuncu M.R., Konukoglu E. Clinical prediction from structural brain MRI scans: a large-scale empirical study. Neuroinformatics 2015, 13(1):31-46.
    • (2015) Neuroinformatics , vol.13 , Issue.1 , pp. 31-46
    • Sabuncu, M.R.1    Konukoglu, E.2
  • 65
    • 84870489618 scopus 로고    scopus 로고
    • The relevance voxel machine (RVoxM): a self-tuning Bayesian model for informative image-based prediction
    • Sabuncu M.R., Van Leemput K. The relevance voxel machine (RVoxM): a self-tuning Bayesian model for informative image-based prediction. IEEE Trans. Med. Imaging 2012, 31(12):2290-2306.
    • (2012) IEEE Trans. Med. Imaging , vol.31 , Issue.12 , pp. 2290-2306
    • Sabuncu, M.R.1    Van Leemput, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.