메뉴 건너뛰기




Volumn 18, Issue 5, 2014, Pages 808-818

Multiple instance learning for classification of dementia in brain MRI

Author keywords

Alzheimer's disease; Classification; Multiple instance learning; Structural MR imaging

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); LEARNING SYSTEMS; MAGNETIC RESONANCE IMAGING; NEURODEGENERATIVE DISEASES;

EID: 84901016404     PISSN: 13618415     EISSN: 13618423     Source Type: Journal    
DOI: 10.1016/j.media.2014.04.006     Document Type: Article
Times cited : (193)

References (63)
  • 1
    • 0032786569 scopus 로고    scopus 로고
    • Improving support vector machine classifiers by modifying kernel functions
    • Amari S.-i., Wu S. Improving support vector machine classifiers by modifying kernel functions. Neural Networks 1999, 12(6):783-789.
    • (1999) Neural Networks , vol.12 , Issue.6 , pp. 783-789
    • Amari, S.-I.1    Wu, S.2
  • 3
    • 70450188146 scopus 로고    scopus 로고
    • Visual tracking with online multiple instance learning
    • IEEE Conference on Computer Vision and Pattern Recognition
    • Babenko, B., Yang, M.-H., Belongie, S., 2009. Visual tracking with online multiple instance learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 983-990.
    • (2009) , pp. 983-990
    • Babenko, B.1    Yang, M.-H.2    Belongie, S.3
  • 4
    • 35148890331 scopus 로고    scopus 로고
    • Multiple instance learning of pulmonary embolism detection with geodesic distance along vascular structure
    • IEEE Conference on Computer Vision and Pattern Recognition
    • Bi, J., Liang, J., 2007. Multiple instance learning of pulmonary embolism detection with geodesic distance along vascular structure. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8.
    • (2007) , pp. 1-8
    • Bi, J.1    Liang, J.2
  • 6
    • 8444241860 scopus 로고    scopus 로고
    • Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
    • Cawley G.C., Talbot N.L. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks 2004, 17(10):1467-1476.
    • (2004) Neural Networks , vol.17 , Issue.10 , pp. 1467-1476
    • Cawley, G.C.1    Talbot, N.L.2
  • 7
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • 27:1-27:27, software available at
    • Chang C.-C., Lin C.-J. LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2:27:1-27:27. software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2
    • Chang, C.-C.1    Lin, C.-J.2
  • 8
    • 84855418467 scopus 로고    scopus 로고
    • Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data
    • Cho Y., Seong J.-K., Jeong Y., Shin S.Y. Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage 2012, 59(3):2217-2230.
    • (2012) Neuroimage , vol.59 , Issue.3 , pp. 2217-2230
    • Cho, Y.1    Seong, J.-K.2    Jeong, Y.3    Shin, S.Y.4
  • 9
    • 84862776712 scopus 로고    scopus 로고
    • Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
    • Chu C., Hsu A.-L., Chou K.-H., Bandettini P., Lin C.-P. Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage 2011, 60:59-70.
    • (2011) NeuroImage , vol.60 , pp. 59-70
    • Chu, C.1    Hsu, A.-L.2    Chou, K.-H.3    Bandettini, P.4    Lin, C.-P.5
  • 12
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
    • Cuingnet R., Gerardin E., Tessieras J., Auzias G., Lehéricy S., Habert M.-O., Chupin M., Benali H., Colliot O. Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 2011, 56(2):766-781.
    • (2011) Neuroimage , vol.56 , Issue.2 , pp. 766-781
    • Cuingnet, R.1    Gerardin, E.2    Tessieras, J.3    Auzias, G.4    Lehéricy, S.5    Habert, M.-O.6    Chupin, M.7    Benali, H.8    Colliot, O.9
  • 13
    • 84868582487 scopus 로고    scopus 로고
    • Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning
    • Eskildsen S.F., Coupé P., García-Lorenzo D., Fonov V., Pruessner J.C., Collins D.L. Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning. NeuroImage 2013, 65:511-521.
    • (2013) NeuroImage , vol.65 , pp. 511-521
    • Eskildsen, S.F.1    Coupé, P.2    García-Lorenzo, D.3    Fonov, V.4    Pruessner, J.C.5    Collins, D.L.6
  • 14
    • 33846264886 scopus 로고    scopus 로고
    • COMPARE: classification of morphological patterns using adaptive regional elements
    • Fan Y., Shen D., Gur R.C., Gur R.E., Davatzikos C. COMPARE: classification of morphological patterns using adaptive regional elements. IEEE Trans. Med. Imaging 2007, 26(1):93-105.
    • (2007) IEEE Trans. Med. Imaging , vol.26 , Issue.1 , pp. 93-105
    • Fan, Y.1    Shen, D.2    Gur, R.C.3    Gur, R.E.4    Davatzikos, C.5
  • 17
    • 27744565003 scopus 로고    scopus 로고
    • Classification and selection of biomarkers in genomic data using LASSO
    • Ghosh D., Chinnaiyan A.M. Classification and selection of biomarkers in genomic data using LASSO. BioMed Res. Int. 2005, 2005(2):147-154.
    • (2005) BioMed Res. Int. , vol.2005 , Issue.2 , pp. 147-154
    • Ghosh, D.1    Chinnaiyan, A.M.2
  • 18
    • 84855992916 scopus 로고    scopus 로고
    • Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease
    • Gray K.R., Wolz R., Heckemann R.A., Aljabar P., Hammers A., Rueckert D. Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease. NeuroImage 2012, 60(1):221-229.
    • (2012) NeuroImage , vol.60 , Issue.1 , pp. 221-229
    • Gray, K.R.1    Wolz, R.2    Heckemann, R.A.3    Aljabar, P.4    Hammers, A.5    Rueckert, D.6
  • 19
    • 84868215748 scopus 로고    scopus 로고
    • Random forest-based similarity measures for multi-modal classification of Alzheimer's disease
    • Gray K.R., Aljabar P., Heckemann R.A., Hammers A., Rueckert D. Random forest-based similarity measures for multi-modal classification of Alzheimer's disease. Neuroimage 2013, 65:167-175.
    • (2013) Neuroimage , vol.65 , pp. 167-175
    • Gray, K.R.1    Aljabar, P.2    Heckemann, R.A.3    Hammers, A.4    Rueckert, D.5
  • 22
    • 67949103436 scopus 로고    scopus 로고
    • Spatially augmented lpboosting for AD classification with evaluations on the ADNI dataset
    • Hinrichs C., Singh V., Mukherjee L., Xu G., Chung M.K., Johnson S.C. Spatially augmented lpboosting for AD classification with evaluations on the ADNI dataset. Neuroimage 2009, 48(1):138-149.
    • (2009) Neuroimage , vol.48 , Issue.1 , pp. 138-149
    • Hinrichs, C.1    Singh, V.2    Mukherjee, L.3    Xu, G.4    Chung, M.K.5    Johnson, S.C.6
  • 23
    • 79551576499 scopus 로고    scopus 로고
    • Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
    • Hinrichs C., Singh V., Xu G., Johnson S.C. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 2011, 55(2):574-589.
    • (2011) Neuroimage , vol.55 , Issue.2 , pp. 574-589
    • Hinrichs, C.1    Singh, V.2    Xu, G.3    Johnson, S.C.4
  • 24
    • 23844484183 scopus 로고    scopus 로고
    • Comparing graph representations of protein structure for mining family-specific residue-based packing motifs
    • Huan J., Bandyopadhyay D., Wang W., Snoeyink J., Prins J., Tropsha A. Comparing graph representations of protein structure for mining family-specific residue-based packing motifs. J. Comput. Biol. 2005, 12(6):657-671.
    • (2005) J. Comput. Biol. , vol.12 , Issue.6 , pp. 657-671
    • Huan, J.1    Bandyopadhyay, D.2    Wang, W.3    Snoeyink, J.4    Prins, J.5    Tropsha, A.6
  • 25
    • 41949137974 scopus 로고    scopus 로고
    • The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
    • Jack C., Bernstein M., et al. The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 2008, 27(4):685-691.
    • (2008) J. Magn. Reson. Imaging , vol.27 , Issue.4 , pp. 685-691
    • Jack, C.1    Bernstein, M.2
  • 28
    • 84874386546 scopus 로고    scopus 로고
    • An unbiased longitudinal analysis framework for tracking white matter changes using diffusion tensor imaging with application to Alzheimer's disease
    • Keihaninejad S., Zhang H., Ryan N.S., Malone I.B., Modat M., Cardoso M.J., Cash D., Fox N.C., Ourselin S. An unbiased longitudinal analysis framework for tracking white matter changes using diffusion tensor imaging with application to Alzheimer's disease. NeuroImage 2013, 72:153-163.
    • (2013) NeuroImage , vol.72 , pp. 153-163
    • Keihaninejad, S.1    Zhang, H.2    Ryan, N.S.3    Malone, I.B.4    Modat, M.5    Cardoso, M.J.6    Cash, D.7    Fox, N.C.8    Ourselin, S.9
  • 29
  • 30
    • 67649135107 scopus 로고    scopus 로고
    • Circular analysis in systems neuroscience: the dangers of double dipping
    • Kriegeskorte N., Simmons W.K., Bellgowan P.S., Baker C.I. Circular analysis in systems neuroscience: the dangers of double dipping. Nat. Neurosci. 2009, 12(5):535-540.
    • (2009) Nat. Neurosci. , vol.12 , Issue.5 , pp. 535-540
    • Kriegeskorte, N.1    Simmons, W.K.2    Bellgowan, P.S.3    Baker, C.I.4
  • 31
    • 10044226234 scopus 로고    scopus 로고
    • Cortical thickness analysis examined through power analysis and a population simulation
    • Lerch J.P., Evans A.C. Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 2005, 24(1):163-173.
    • (2005) Neuroimage , vol.24 , Issue.1 , pp. 163-173
    • Lerch, J.P.1    Evans, A.C.2
  • 32
    • 79952067465 scopus 로고    scopus 로고
    • Brain MAPS: an automated, accurate and robust brain extraction technique using a template library
    • Leung K.K., Barnes J., Modat M., Ridgway G.R., Bartlett J.W., Fox N.C., Ourselin S. Brain MAPS: an automated, accurate and robust brain extraction technique using a template library. Neuroimage 2011, 55(3):1091-1108.
    • (2011) Neuroimage , vol.55 , Issue.3 , pp. 1091-1108
    • Leung, K.K.1    Barnes, J.2    Modat, M.3    Ridgway, G.R.4    Bartlett, J.W.5    Fox, N.C.6    Ourselin, S.7
  • 33
    • 84862778147 scopus 로고    scopus 로고
    • Ensemble sparse classification of Alzheimer's disease
    • Liu M., Zhang D., Shen D. Ensemble sparse classification of Alzheimer's disease. Neuroimage 2012, 60(2):1106-1116.
    • (2012) Neuroimage , vol.60 , Issue.2 , pp. 1106-1116
    • Liu, M.1    Zhang, D.2    Shen, D.3
  • 34
    • 84872896394 scopus 로고    scopus 로고
    • Tree-Guided Sparse Coding for Brain Disease Classification, MICCAI
    • Liu, M., Zhang, D., Yap, P.-T., Shen, D., 2012b. Tree-Guided Sparse Coding for Brain Disease Classification, MICCAI, pp. 239-247.
    • (2012) , pp. 239-247
    • Liu, M.1    Zhang, D.2    Yap, P.-T.3    Shen, D.4
  • 35
    • 84896396327 scopus 로고    scopus 로고
    • Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis
    • Human Brain Mapping doi: 10.1002/hbm.22254.
    • Liu, M., Zhang, D., Shen, D., 2013. Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis. Human Brain Mapping doi: 10.1002/hbm.22254.
    • (2013)
    • Liu, M.1    Zhang, D.2    Shen, D.3
  • 37
    • 80052892770 scopus 로고    scopus 로고
    • Effective 3D object detection and regression using probabilistic segmentation features in CT images
    • IEEE Conference on Computer Vision and Pattern Recognition
    • Lu, L., Bi, J., Wolf, M., Salganicoff, M., 2011. Effective 3D object detection and regression using probabilistic segmentation features in CT images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1049-1056.
    • (2011) , pp. 1049-1056
    • Lu, L.1    Bi, J.2    Wolf, M.3    Salganicoff, M.4
  • 41
    • 0344374438 scopus 로고    scopus 로고
    • On standardizing the MR image intensity scale
    • Nyúl L.G., Udupa J.K. On standardizing the MR image intensity scale. Magn. Reson. Med. 1999, 42(6):1072.
    • (1999) Magn. Reson. Med. , vol.42 , Issue.6 , pp. 1072
    • Nyúl, L.G.1    Udupa, J.K.2
  • 42
    • 47249085131 scopus 로고    scopus 로고
    • FMRI: use in early Alzheimers disease and in clinical trials
    • Pihlajamäki M., Sperling R.A. fMRI: use in early Alzheimers disease and in clinical trials. Future Neurol. 2008, 3(4):409-421.
    • (2008) Future Neurol. , vol.3 , Issue.4 , pp. 409-421
    • Pihlajamäki, M.1    Sperling, R.A.2
  • 44
    • 0029043654 scopus 로고
    • A probabilistic atlas of the human brain: theory and rationale for its development
    • Proverb C. A probabilistic atlas of the human brain: theory and rationale for its development. Neuroimage 1995, 2:89-101.
    • (1995) Neuroimage , vol.2 , pp. 89-101
    • Proverb, C.1
  • 45
    • 48649092771 scopus 로고    scopus 로고
    • Clinical criteria for the diagnosis of Alzheimer disease: still good after all these years
    • Ranginwala N.A., Hynan L.S., Weiner M.F., White C.L. Clinical criteria for the diagnosis of Alzheimer disease: still good after all these years. Am. J. Geriatric Psych 2008, 16(5):384-388.
    • (2008) Am. J. Geriatric Psych , vol.16 , Issue.5 , pp. 384-388
    • Ranginwala, N.A.1    Hynan, L.S.2    Weiner, M.F.3    White, C.L.4
  • 47
    • 17644437641 scopus 로고    scopus 로고
    • Advanced support vector machines and kernel methods
    • Sanchez A., David V. Advanced support vector machines and kernel methods. Neurocomputing 2003, 55(1):5-20.
    • (2003) Neurocomputing , vol.55 , Issue.1 , pp. 5-20
    • Sanchez, A.1    David, V.2
  • 49
    • 84862273366 scopus 로고    scopus 로고
    • Efficient graphlet kernels for large graph comparison. In: International Conference on Artificial Intelligence and Statistics, 2009
    • Shervashidze, N., Petri, T., Mehlhorn, K., Borgwardt, K.M., Viswanathan, S., 2009. Efficient graphlet kernels for large graph comparison. In: International Conference on Artificial Intelligence and Statistics, 2009, pp. 488-495.
    • (2009) , pp. 488-495
    • Shervashidze, N.1    Petri, T.2    Mehlhorn, K.3    Borgwardt, K.M.4    Viswanathan, S.5
  • 50
    • 84897574244 scopus 로고    scopus 로고
    • Multiple Instance Learning for Classification of Dementia in Brain MRI, MICCAI
    • Tong, T., Wolz, R., Gao, Q., Hajnal, J.V., Rueckert, D., 2013. Multiple Instance Learning for Classification of Dementia in Brain MRI, MICCAI, pp. 599-606.
    • (2013) , pp. 599-606
    • Tong, T.1    Wolz, R.2    Gao, Q.3    Hajnal, J.V.4    Rueckert, D.5
  • 51
    • 84856108049 scopus 로고    scopus 로고
    • Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease
    • Vounou M., Janousova E., Wolz R., Stein J.L., Thompson P.M., Rueckert D., Montana G. Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease. Neuroimage 2012, 60(1):700-716.
    • (2012) Neuroimage , vol.60 , Issue.1 , pp. 700-716
    • Vounou, M.1    Janousova, E.2    Wolz, R.3    Stein, J.L.4    Thompson, P.M.5    Rueckert, D.6    Montana, G.7
  • 53
    • 84886240845 scopus 로고    scopus 로고
    • Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns
    • Human Brain Mapping doi: 10.1002/hbm.22156.
    • Wee, C.-Y., Yap, P.-T., Shen, D., 2012a. Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns. Human Brain Mapping doi: 10.1002/hbm.22156.
    • (2012)
    • Wee, C.-Y.1    Yap, P.-T.2    Shen, D.3
  • 57
    • 84859428844 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction combining MR imaging with non-imaging information
    • Wolz R., Aljabar P., Hajnal J.V., Lötjönen J., Rueckert D. Nonlinear dimensionality reduction combining MR imaging with non-imaging information. Medical Image Anal. 2012, 16(4):819-830.
    • (2012) Medical Image Anal. , vol.16 , Issue.4 , pp. 819-830
    • Wolz, R.1    Aljabar, P.2    Hajnal, J.V.3    Lötjönen, J.4    Rueckert, D.5
  • 59
    • 84872920888 scopus 로고    scopus 로고
    • Context-constrained multiple instance learning for histopathology image segmentation, MICCAI
    • Xu, Y., Zhang, J., Chang, E., Lai, M., Tu, Z., 2012. Context-constrained multiple instance learning for histopathology image segmentation, MICCAI, pp. 623-630.
    • (2012) , pp. 623-630
    • Xu, Y.1    Zhang, J.2    Chang, E.3    Lai, M.4    Tu, Z.5
  • 61
    • 33846575157 scopus 로고    scopus 로고
    • Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia
    • Yoon U., Lee J.-M., Im K., Shin Y.-W., Cho B.H., Kim I.Y., Kwon J.S., Kim S.I. Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia. Neuroimage 2007, 34(4):1405-1415.
    • (2007) Neuroimage , vol.34 , Issue.4 , pp. 1405-1415
    • Yoon, U.1    Lee, J.-M.2    Im, K.3    Shin, Y.-W.4    Cho, B.H.5    Kim, I.Y.6    Kwon, J.S.7    Kim, S.I.8
  • 62
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease and mild cognitive impairment
    • Zhang D., Wang Y., Zhou L., Yuan H., Shen D. Multimodal classification of Alzheimer's disease and mild cognitive impairment. Neuroimage 2011, 55(3):856-867.
    • (2011) Neuroimage , vol.55 , Issue.3 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5
  • 63
    • 71149085943 scopus 로고    scopus 로고
    • Multi-instance learning by treating instances as non-IID samples
    • Zhou Z.-H., Sun Y.-Y., Li Y.-F. Multi-instance learning by treating instances as non-IID samples. Int. Conf. Mach. Learn. 2009, 1249-1256.
    • (2009) Int. Conf. Mach. Learn. , pp. 1249-1256
    • Zhou, Z.-H.1    Sun, Y.-Y.2    Li, Y.-F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.