메뉴 건너뛰기




Volumn 91, Issue , 2014, Pages 386-400

Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion

Author keywords

Classification; Data imputation; Matrix completion; Multi task learning

Indexed keywords

AMYLOID BETA PROTEIN; TAU PROTEIN;

EID: 84896353646     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2014.01.033     Document Type: Article
Times cited : (91)

References (82)
  • 1
    • 84896339082 scopus 로고    scopus 로고
    • Alzheimer's Association, 2013 Alzheimer's disease facts and figures
    • Alzheimer's Association 2013 Alzheimer's disease facts and figures. Alzheimer's Dement. 2013, 9.
    • (2013) Alzheimer's Dement. , vol.9
  • 2
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • Candès E.J., Recht B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9:717-772.
    • (2009) Found. Comput. Math. , vol.9 , pp. 717-772
    • Candès, E.J.1    Recht, B.2
  • 3
    • 0037461347 scopus 로고    scopus 로고
    • Mild cognitive impairment can FDG-PET predict who is to rapidly convert to Alzheimer's disease?
    • Chételat G., Desgranges B., De La Sayette V., Viader F., Eustache F., Baron J.C. Mild cognitive impairment can FDG-PET predict who is to rapidly convert to Alzheimer's disease?. Neurology 2003, 60:1374-1377.
    • (2003) Neurology , vol.60 , pp. 1374-1377
    • Chételat, G.1    Desgranges, B.2    De La Sayette, V.3    Viader, F.4    Eustache, F.5    Baron, J.C.6
  • 4
    • 20144379890 scopus 로고    scopus 로고
    • FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment
    • Chételat G., Eustache F., Viader F., Sayette V.D.L., Pélerin A., Mézenge F., Hannequin D., Dupuy B., Baron J.C., Desgranges B. FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase 2005, 11:14-25.
    • (2005) Neurocase , vol.11 , pp. 14-25
    • Chételat, G.1    Eustache, F.2    Viader, F.3    Sayette, V.D.L.4    Pélerin, A.5    Mézenge, F.6    Hannequin, D.7    Dupuy, B.8    Baron, J.C.9    Desgranges, B.10
  • 5
    • 0007234813 scopus 로고    scopus 로고
    • Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer's disease
    • Convit A., De Asis J., De Leon M., Tarshish C., De Santi S., Rusinek H. Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer's disease. Neurobiol. Aging 2000, 21:19-26.
    • (2000) Neurobiol. Aging , vol.21 , pp. 19-26
    • Convit, A.1    De Asis, J.2    De Leon, M.3    Tarshish, C.4    De Santi, S.5    Rusinek, H.6
  • 6
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
    • Cuingnet R., Gerardin E., Tessieras J., Auzias G., Lehéricy S., Habert M.O., Chupin M., Benali H., Colliot O. Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 2011, 56:766-781.
    • (2011) Neuroimage , vol.56 , pp. 766-781
    • Cuingnet, R.1    Gerardin, E.2    Tessieras, J.3    Auzias, G.4    Lehéricy, S.5    Habert, M.O.6    Chupin, M.7    Benali, H.8    Colliot, O.9
  • 7
    • 80053654021 scopus 로고    scopus 로고
    • Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
    • 2322.e19-2322.e27
    • Davatzikos C., Bhatt P., Shaw L.M., Batmanghelich K.N., Trojanowski J.Q. Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol. Aging 2011, 32:2322.e19-2322.e27.
    • (2011) Neurobiol. Aging , vol.32
    • Davatzikos, C.1    Bhatt, P.2    Shaw, L.M.3    Batmanghelich, K.N.4    Trojanowski, J.Q.5
  • 12
    • 33947223454 scopus 로고    scopus 로고
    • Cerebrospinal fluid tau/beta-amyloid42 ratio as a prediction of cognitive decline in nondemented older adults
    • Fagan A.M., Roe C.M., Xiong C., Mintun M.A., Morris J.C., Holtzman D.M. Cerebrospinal fluid tau/beta-amyloid42 ratio as a prediction of cognitive decline in nondemented older adults. Arch. Neurol. 2007, 64:343.
    • (2007) Arch. Neurol. , vol.64 , pp. 343
    • Fagan, A.M.1    Roe, C.M.2    Xiong, C.3    Mintun, M.A.4    Morris, J.C.5    Holtzman, D.M.6
  • 14
    • 33846264886 scopus 로고    scopus 로고
    • COMPARE: classification of morphological patterns using adaptive regional elements
    • Fan Y., Shen D., Gur R.C., Gur R.E., Davatzikos C. COMPARE: classification of morphological patterns using adaptive regional elements. IEEE Trans. Med. Imaging 2007, 26:93-105.
    • (2007) IEEE Trans. Med. Imaging , vol.26 , pp. 93-105
    • Fan, Y.1    Shen, D.2    Gur, R.C.3    Gur, R.E.4    Davatzikos, C.5
  • 15
    • 44249088535 scopus 로고    scopus 로고
    • Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study
    • Fan Y., Resnick S.M., Wu X., Davatzikos C. Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study. Neuroimage 2008, 41:277-285.
    • (2008) Neuroimage , vol.41 , pp. 277-285
    • Fan, Y.1    Resnick, S.M.2    Wu, X.3    Davatzikos, C.4
  • 19
    • 76749163647 scopus 로고    scopus 로고
    • Selection-fusion approach for classification of datasets with missing values
    • Ghannad-Rezaie M., Soltanian-Zadeh H., Ying H., Dong M. Selection-fusion approach for classification of datasets with missing values. Pattern Recogn. 2010, 43:2340-2350.
    • (2010) Pattern Recogn. , vol.43 , pp. 2340-2350
    • Ghannad-Rezaie, M.1    Soltanian-Zadeh, H.2    Ying, H.3    Dong, M.4
  • 21
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3:1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 25
    • 79551576499 scopus 로고    scopus 로고
    • Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
    • Hinrichs C., Singh V., Xu G., Johnson S.C. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 2011, 55:574-589.
    • (2011) Neuroimage , vol.55 , pp. 574-589
    • Hinrichs, C.1    Singh, V.2    Xu, G.3    Johnson, S.C.4
  • 26
    • 84942484786 scopus 로고
    • Ridge regression: biased estimation for nonorthogonal problems
    • Hoerl A.E., Kennard R.W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970, 12:55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 29
    • 77952419496 scopus 로고    scopus 로고
    • ABSORB: Atlas building by self-organized registration and bundling
    • Jia H., Wu G., Wang Q., Shen D. ABSORB: Atlas building by self-organized registration and bundling. Neuroimage 2010, 51(3):1057-1070.
    • (2010) Neuroimage , vol.51 , Issue.3 , pp. 1057-1070
    • Jia, H.1    Wu, G.2    Wang, Q.3    Shen, D.4
  • 30
    • 33847320688 scopus 로고    scopus 로고
    • Speed-up for the expectation-maximization algorithm for clustering categorical data
    • Jollois F.X., Nadif M. Speed-up for the expectation-maximization algorithm for clustering categorical data. J. Glob. Optim. 2007, 37:513-525.
    • (2007) J. Glob. Optim. , vol.37 , pp. 513-525
    • Jollois, F.X.1    Nadif, M.2
  • 31
    • 0342723538 scopus 로고    scopus 로고
    • A 3D atlas of the human brain
    • Kabani N.J. A 3D atlas of the human brain. NeuroImage 1998, 7:S717.
    • (1998) NeuroImage , vol.7
    • Kabani, N.J.1
  • 34
    • 82755161873 scopus 로고    scopus 로고
    • Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features
    • 427-e15
    • Li Y., Wang Y., Wu G., Shi F., Zhou L., Lin W., Shen D. Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features. Neurobiol. Aging 2012, 33. 427-e15.
    • (2012) Neurobiol. Aging , vol.33
    • Li, Y.1    Wang, Y.2    Wu, G.3    Shi, F.4    Zhou, L.5    Lin, W.6    Shen, D.7
  • 35
    • 84862778147 scopus 로고    scopus 로고
    • Ensemble sparse classification of Alzheimer's disease
    • Liu M., Zhang D., Shen D. Ensemble sparse classification of Alzheimer's disease. Neuroimage 2012, 60:1106-1116.
    • (2012) Neuroimage , vol.60 , pp. 1106-1116
    • Liu, M.1    Zhang, D.2    Shen, D.3
  • 38
    • 84885160193 scopus 로고    scopus 로고
    • Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's disease and mild cognitive impairment identification
    • Liu F., Wee C.Y., Chen H., Shen D. Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's disease and mild cognitive impairment identification. Neuroimage 2014, 84:466-475.
    • (2014) Neuroimage , vol.84 , pp. 466-475
    • Liu, F.1    Wee, C.Y.2    Chen, H.3    Shen, D.4
  • 39
    • 79957957723 scopus 로고    scopus 로고
    • Fixed point and Bregman iterative methods for matrix rank minimization
    • Ma S., Goldfarb D., Chen L. Fixed point and Bregman iterative methods for matrix rank minimization. Math. Program. 2011, 128:321-353.
    • (2011) Math. Program. , vol.128 , pp. 321-353
    • Ma, S.1    Goldfarb, D.2    Chen, L.3
  • 42
    • 34548480020 scopus 로고
    • A method of solving a convex programming problem with convergence rate O (1/k2)
    • Nesterov Y. A method of solving a convex programming problem with convergence rate O (1/k2). Soviet Mathematics Doklady 1983, 372-376.
    • (1983) Soviet Mathematics Doklady , pp. 372-376
    • Nesterov, Y.1
  • 44
    • 34948865158 scopus 로고    scopus 로고
    • Multi-task feature selection
    • Statistics Department, UC Berkeley
    • Obozinski G., Taskar B., Jordan M.I. Multi-task feature selection. Tech. Rep. 2006, Statistics Department, UC Berkeley.
    • (2006) Tech. Rep.
    • Obozinski, G.1    Taskar, B.2    Jordan, M.I.3
  • 45
    • 77950343082 scopus 로고    scopus 로고
    • Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer's disease
    • Oliveira P.P., Nitrini R., Busatto G., Buchpiguel C., Sato J.R., Amaro E. Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer's disease. J. Alzheimer's Dis. 2010, 19:1263-1272.
    • (2010) J. Alzheimer's Dis. , vol.19 , pp. 1263-1272
    • Oliveira, P.P.1    Nitrini, R.2    Busatto, G.3    Buchpiguel, C.4    Sato, J.R.5    Amaro, E.6
  • 48
    • 0035284320 scopus 로고    scopus 로고
    • Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values
    • Schneider T. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J. Clim. 2001, 14:853-871.
    • (2001) J. Clim. , vol.14 , pp. 853-871
    • Schneider, T.1
  • 49
    • 1842452878 scopus 로고    scopus 로고
    • Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping
    • Shen D., Davatzikos C. Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping. Neuroimage 2004, 21(4):1508-1517.
    • (2004) Neuroimage , vol.21 , Issue.4 , pp. 1508-1517
    • Shen, D.1    Davatzikos, C.2
  • 50
    • 0036880516 scopus 로고    scopus 로고
    • HAMMER: hierarchical attribute matching mechanism for elastic registration
    • Shen D., Davatzikos C. HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imaging 2002, 21:1421-1439.
    • (2002) IEEE Trans. Med. Imaging , vol.21 , pp. 1421-1439
    • Shen, D.1    Davatzikos, C.2
  • 51
    • 0033132544 scopus 로고    scopus 로고
    • Affine-invariant image retrieval by correspondence matching of shapes
    • Shen D., Wong W.H., Ip H.H. Affine-invariant image retrieval by correspondence matching of shapes. Image and Vision Computing 1999, 17(7):489-499.
    • (1999) Image and Vision Computing , vol.17 , Issue.7 , pp. 489-499
    • Shen, D.1    Wong, W.H.2    Ip, H.H.3
  • 52
    • 0031987382 scopus 로고    scopus 로고
    • A nonparametric method for automatic correction of intensity nonuniformity in MRI data
    • Sled J.G., Zijdenbos A.P., Evans A.C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 1998, 17:87-97.
    • (1998) IEEE Trans. Med. Imaging , vol.17 , pp. 87-97
    • Sled, J.G.1    Zijdenbos, A.P.2    Evans, A.C.3
  • 54
    • 67651154142 scopus 로고    scopus 로고
    • RABBIT: rapid alignment of brains by building intermediate templates
    • Tang S., Fan Y., Wu G., Kim M., Shen D. RABBIT: rapid alignment of brains by building intermediate templates. Neuroimage 2009, 47(4):1277-1287.
    • (2009) Neuroimage , vol.47 , Issue.4 , pp. 1277-1287
    • Tang, S.1    Fan, Y.2    Wu, G.3    Kim, M.4    Shen, D.5
  • 63
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • Wright J., Ma Y., Mairal J., Sapiro G., Huang T.S., Yan S. Sparse representation for computer vision and pattern recognition. Proc. IEEE 2010, 98:1031-1044.
    • (2010) Proc. IEEE , vol.98 , pp. 1031-1044
    • Wright, J.1    Ma, Y.2    Mairal, J.3    Sapiro, G.4    Huang, T.S.5    Yan, S.6
  • 64
    • 33748095663 scopus 로고    scopus 로고
    • Learning-based deformable registration of MR brain images
    • Wu G., Qi F., Shen D. Learning-based deformable registration of MR brain images. IEEE Trans. Med. Imaging 2006, 25(9):1145-1157.
    • (2006) IEEE Trans. Med. Imaging , vol.25 , Issue.9 , pp. 1145-1157
    • Wu, G.1    Qi, F.2    Shen, D.3
  • 65
    • 84896385378 scopus 로고    scopus 로고
    • Bi-level multi-source learning for heterogeneous block-wise missing data
    • (in press)
    • Xiang S., Yuan L., Fan W., Wang Y., Thompson P.M., Ye J. Bi-level multi-source learning for heterogeneous block-wise missing data. Neuroimage 2013, (in press).
    • (2013) Neuroimage
    • Xiang, S.1    Yuan, L.2    Fan, W.3    Wang, Y.4    Thompson, P.M.5    Ye, J.6
  • 66
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the em algorithm for Gaussian mixtures
    • Xu L., Jordan M.I. On convergence properties of the em algorithm for Gaussian mixtures. Neural Comput. 1996, 8:129-151.
    • (1996) Neural Comput. , vol.8 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 67
    • 33750054125 scopus 로고    scopus 로고
    • Simulating deformations of MR brain images for validation of atlas-based segmentation and registration algorithms
    • Xue Z., Shen D., Karacali B., Stern J., Rottenberg D., Davatzikos C. Simulating deformations of MR brain images for validation of atlas-based segmentation and registration algorithms. Neuroimage 2006, 33(3):855-866.
    • (2006) Neuroimage , vol.33 , Issue.3 , pp. 855-866
    • Xue, Z.1    Shen, D.2    Karacali, B.3    Stern, J.4    Rottenberg, D.5    Davatzikos, C.6
  • 68
    • 33747837711 scopus 로고    scopus 로고
    • Statistical representation of high-dimensional deformation fields with application to statistically constrained 3D warping
    • Xue Z., Shen D., Davatzikos C. Statistical representation of high-dimensional deformation fields with application to statistically constrained 3D warping. Medical Image Analysis 2006, 10(5):740-751.
    • (2006) Medical Image Analysis , vol.10 , Issue.5 , pp. 740-751
    • Xue, Z.1    Shen, D.2    Davatzikos, C.3
  • 69
    • 84862793257 scopus 로고    scopus 로고
    • Voxelwise meta-analysis of gray matter anomalies in Alzheimer's disease and mild cognitive impairment using anatomic likelihood estimation
    • Yang J., Pan P., Song W., Huang R., Li J., Chen K., Gong Q., Zhong J., Shi H., Shang H. Voxelwise meta-analysis of gray matter anomalies in Alzheimer's disease and mild cognitive impairment using anatomic likelihood estimation. J. Neurol. Sci. 2012, 316:21-29.
    • (2012) J. Neurol. Sci. , vol.316 , pp. 21-29
    • Yang, J.1    Pan, P.2    Song, W.3    Huang, R.4    Li, J.5    Chen, K.6    Gong, Q.7    Zhong, J.8    Shi, H.9    Shang, H.10
  • 71
    • 67349227431 scopus 로고    scopus 로고
    • TIMER: tensor image morphing for elastic registration
    • Yap P.T., Wu G., Zhu H., Lin W., Shen D. TIMER: tensor image morphing for elastic registration. Neuroimage 2009, 47(2):549-563.
    • (2009) Neuroimage , vol.47 , Issue.2 , pp. 549-563
    • Yap, P.T.1    Wu, G.2    Zhu, H.3    Lin, W.4    Shen, D.5
  • 73
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan M., Lin Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat Methodol. 2006, 68:49-67.
    • (2006) J. R. Stat. Soc. Ser. B Stat Methodol. , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 74
    • 84861187815 scopus 로고    scopus 로고
    • Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data
    • Yuan L., Wang Y., Thompson P.M., Narayan V.A., Ye J. Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data. Neuroimage 2012, 61:622-632.
    • (2012) Neuroimage , vol.61 , pp. 622-632
    • Yuan, L.1    Wang, Y.2    Thompson, P.M.3    Narayan, V.A.4    Ye, J.5
  • 75
    • 43449092116 scopus 로고    scopus 로고
    • ORBIT: a multiresolution framework for deformable registration of brain tumor images
    • Zacharaki E.I., Shen D., Lee S.K., Davatzikos C. ORBIT: a multiresolution framework for deformable registration of brain tumor images. IEEE Trans. Med. Imaging 2008, 27(8):1003-1017.
    • (2008) IEEE Trans. Med. Imaging , vol.27 , Issue.8 , pp. 1003-1017
    • Zacharaki, E.I.1    Shen, D.2    Lee, S.K.3    Davatzikos, C.4
  • 76
    • 83055184373 scopus 로고    scopus 로고
    • Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
    • Zhang D., Shen D. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. Neuroimaging 2012, 59:895-907.
    • (2012) Neuroimaging , vol.59 , pp. 895-907
    • Zhang, D.1    Shen, D.2
  • 77
    • 84863351725 scopus 로고    scopus 로고
    • Predicting future clinical changes of mci patients using longitudinal and multimodal biomarkers
    • Zhang D., Shen D., et al. Predicting future clinical changes of mci patients using longitudinal and multimodal biomarkers. PloS one 2012, 7(3):e33182.
    • (2012) PloS one , vol.7 , Issue.3
    • Zhang, D.1    Shen, D.2
  • 78
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • Zhang Y., Brady M., Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 2001, 20:45-57.
    • (2001) IEEE Trans. Med. Imaging , vol.20 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 79
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease and mild cognitive impairment
    • Zhang D., Wang Y., Zhou L., Yuan H., Shen D. Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage 2011, 55:856-867.
    • (2011) NeuroImage , vol.55 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5
  • 80
    • 79960471063 scopus 로고    scopus 로고
    • Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures
    • Zhou L., Wang Y., Li Y., Yap P.T., Shen D., et al. Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures. PloS one 2011, 6:e21935.
    • (2011) PloS one , vol.6
    • Zhou, L.1    Wang, Y.2    Li, Y.3    Yap, P.T.4    Shen, D.5
  • 82
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H., Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat Methodol. 2005, 67:301-320.
    • (2005) J. R. Stat. Soc. Ser. B Stat Methodol. , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.