-
1
-
-
78649373124
-
Membranes in Balance: Mechanisms of Sphingolipid Homeostasis
-
[1] Breslow, D.K., Weissman, J.S., Membranes in Balance: Mechanisms of Sphingolipid Homeostasis. Mol. Cell 40 (2010), 267–279, 10.1016/j.molcel.2010.10.005.
-
(2010)
Mol. Cell
, vol.40
, pp. 267-279
-
-
Breslow, D.K.1
Weissman, J.S.2
-
2
-
-
85018193899
-
Sphingolipids
-
N. Ridgway R. McLeod Sixth Edition Elsevier
-
[2] Futerman, A.H., Sphingolipids. Ridgway, N., McLeod, R., (eds.) Biochemistry of Lipids, Lipoproteins and Membranes, Sixth Edition, 2015, Elsevier, 297–326, 10.1016/B978-0-444-63438-2.00010-9.
-
(2015)
Biochemistry of Lipids, Lipoproteins and Membranes
, pp. 297-326
-
-
Futerman, A.H.1
-
3
-
-
84864930736
-
Yeast as a model system for studying lipid homeostasis and function
-
[3] Santos, A.X.S., Riezman, H., Yeast as a model system for studying lipid homeostasis and function. FEBS Lett. 586 (2012), 2858–2867, 10.1016/j.febslet.2012.07.033.
-
(2012)
FEBS Lett.
, vol.586
, pp. 2858-2867
-
-
Santos, A.X.S.1
Riezman, H.2
-
4
-
-
0028214311
-
Cloning and characterization of LAG1, a longevity-assurance gene in yeast
-
[4] D'mello, N.P., Childress, A.M., Franklin, D.S., Kale, S.P., Pinswasdi, C., Jazwinski, S.M., Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J. Biol. Chem. 269 (1994), 15451–15459.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 15451-15459
-
-
D'mello, N.P.1
Childress, A.M.2
Franklin, D.S.3
Kale, S.P.4
Pinswasdi, C.5
Jazwinski, S.M.6
-
5
-
-
0035197535
-
Lag1p and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae
-
[5] Schorling, S., Vallée, B., Barz, W.P., Riezman, H., Oesterhelt, D., Lag1p and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae. Mol. Biol. Cell 12 (2001), 3417–3427.
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 3417-3427
-
-
Schorling, S.1
Vallée, B.2
Barz, W.P.3
Riezman, H.4
Oesterhelt, D.5
-
6
-
-
0035355508
-
C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p
-
[6] Guillas, I., Kirchman, P.A., Chuard, R., Pfefferli, M., Jiang, J.C., Jazwinski, S.M., et al. C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. EMBO J. 20 (2001), 2655–2665, 10.1093/emboj/20.11.2655.
-
(2001)
EMBO J.
, vol.20
, pp. 2655-2665
-
-
Guillas, I.1
Kirchman, P.A.2
Chuard, R.3
Pfefferli, M.4
Jiang, J.C.5
Jazwinski, S.M.6
-
7
-
-
0037144554
-
Upstream of Growth and Differentiation Factor 1 (uog1), a Mammalian Homolog of the Yeast Longevity Assurance Gene 1 (LAG1), Regulates N-Stearoyl-sphinganine (C18-(Dihydro)ceramide) Synthesis in a Fumonisin B1-independent Manner in Mammalian Cells
-
[7] Venkataraman, K., Upstream of Growth and Differentiation Factor 1 (uog1), a Mammalian Homolog of the Yeast Longevity Assurance Gene 1 (LAG1), Regulates N-Stearoyl-sphinganine (C18-(Dihydro)ceramide) Synthesis in a Fumonisin B1-independent Manner in Mammalian Cells. J. Biol. Chem. 277 (2002), 35642–35649, 10.1074/jbc.M205211200.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 35642-35649
-
-
Venkataraman, K.1
-
8
-
-
0141621274
-
Human Homologues of LAG1 Reconstitute Acyl-CoA-dependent Ceramide Synthesis in Yeast
-
[8] Guillas, I., Jiang, J.C., Vionnet, C., Roubaty, C., Uldry, D., Chuard, R., et al. Human Homologues of LAG1 Reconstitute Acyl-CoA-dependent Ceramide Synthesis in Yeast. J. Biol. Chem. 278 (2003), 37083–37091, 10.1074/jbc.M307554200.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 37083-37091
-
-
Guillas, I.1
Jiang, J.C.2
Vionnet, C.3
Roubaty, C.4
Uldry, D.5
Chuard, R.6
-
9
-
-
33748746334
-
When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: Insights into the regulation of ceramide synthesis
-
[9] Pewzner-Jung, Y., Ben-Dor, S., Futerman, A.H., When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: Insights into the regulation of ceramide synthesis. J. Biol. Chem. 281 (2006), 25001–25005, 10.1074/jbc.R600010200.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 25001-25005
-
-
Pewzner-Jung, Y.1
Ben-Dor, S.2
Futerman, A.H.3
-
10
-
-
77649121162
-
Orm family proteins mediate sphingolipid homeostasis
-
[10] Breslow, D.K., Collins, S.R., Bodenmiller, B., Aebersold, R., Simons, K., Shevchenko, A., et al. Orm family proteins mediate sphingolipid homeostasis. Nature 463 (2010), 1048–1053, 10.1038/nature08787.
-
(2010)
Nature
, vol.463
, pp. 1048-1053
-
-
Breslow, D.K.1
Collins, S.R.2
Bodenmiller, B.3
Aebersold, R.4
Simons, K.5
Shevchenko, A.6
-
11
-
-
84870029800
-
Mammalian ORMDL Proteins Mediate the Feedback Response in Ceramide Biosynthesis
-
[11] Siow, D.L., Wattenberg, B.W., Mammalian ORMDL Proteins Mediate the Feedback Response in Ceramide Biosynthesis. J. Biol. Chem. 287 (2012), 40198–40204, 10.1074/jbc.C112.404012.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 40198-40204
-
-
Siow, D.L.1
Wattenberg, B.W.2
-
12
-
-
66349098682
-
Update of the LIPID MAPS comprehensive classification system for lipids
-
[12] Fahy, E., Subramaniam, S., Murphy, R.C., Nishijima, M., Raetz, C.R.H., Shimizu, T., et al. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50:Suppl. (2009), S9–14, 10.1194/jlr.R800095-JLR200.
-
(2009)
J. Lipid Res.
, vol.50
, pp. S9-14
-
-
Fahy, E.1
Subramaniam, S.2
Murphy, R.C.3
Nishijima, M.4
Raetz, C.R.H.5
Shimizu, T.6
-
13
-
-
60549111243
-
Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry
-
[13] Ejsing, C.S., Sampaio, J.L., Surendranath, V., Duchoslav, E., Ekroos, K., Klemm, R.W., et al. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl. Acad. Sci. 106 (2009), 2136–2141, 10.1073/pnas.0811700106.
-
(2009)
Proc. Natl. Acad. Sci.
, vol.106
, pp. 2136-2141
-
-
Ejsing, C.S.1
Sampaio, J.L.2
Surendranath, V.3
Duchoslav, E.4
Ekroos, K.5
Klemm, R.W.6
-
14
-
-
84908148869
-
Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis
-
[14] da Silveira Dos Santos, A.X., Riezman, I., Aguilera-Romero, M.-A., David, F., Piccolis, M., Loewith, R., et al. Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis. Mol. Biol. Cell 25 (2014), 3234–3246, 10.1091/mbc.E14-03-0851.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 3234-3246
-
-
da Silveira Dos Santos, A.X.1
Riezman, I.2
Aguilera-Romero, M.-A.3
David, F.4
Piccolis, M.5
Loewith, R.6
-
15
-
-
84880616651
-
The complexity of sphingolipid biosynthesis in the endoplasmic reticulum
-
[15] Tidhar, R., Futerman, A.H., The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. BBA - Mol. Cell. Res., 1–8, 2013, 10.1016/j.bbamcr.2013.04.010.
-
(2013)
BBA - Mol. Cell. Res.
, vol.1-8
-
-
Tidhar, R.1
Futerman, A.H.2
-
16
-
-
0025739993
-
Cloning and characterization of LCB1, a Saccharomyces gene required for biosynthesis of the long-chain base component of sphingolipids
-
[16] Buede, R., Rinker-Schaffer, C., Pinto, W.J., Lester, R.L., Dickson, R.C., Cloning and characterization of LCB1, a Saccharomyces gene required for biosynthesis of the long-chain base component of sphingolipids. J. Bacteriol. 173 (1991), 4325–4332.
-
(1991)
J. Bacteriol.
, vol.173
, pp. 4325-4332
-
-
Buede, R.1
Rinker-Schaffer, C.2
Pinto, W.J.3
Lester, R.L.4
Dickson, R.C.5
-
17
-
-
0027980277
-
The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis
-
[17] Nagiec, M.M., Baltisberger, J.A., Wells, G.B., Lester, R.L., Dickson, R.C., The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis. Proc. Natl. Acad. Sci. U. S. A. 91 (1994), 7899–7902.
-
(1994)
Proc. Natl. Acad. Sci. U. S. A.
, vol.91
, pp. 7899-7902
-
-
Nagiec, M.M.1
Baltisberger, J.A.2
Wells, G.B.3
Lester, R.L.4
Dickson, R.C.5
-
18
-
-
0032515061
-
The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2 +-sensitive csg2Delta mutant
-
[18] Beeler, T., Bacikova, D., Gable, K., Hopkins, L., Johnson, C., Slife, H., et al. The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2 +-sensitive csg2Delta mutant. J. Biol. Chem. 273 (1998), 30688–30694.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 30688-30694
-
-
Beeler, T.1
Bacikova, D.2
Gable, K.3
Hopkins, L.4
Johnson, C.5
Slife, H.6
-
19
-
-
0033107874
-
TheDPL1Gene Is Involved in Mediating the Response to Nutrient Deprivation inSaccharomyces cerevisiae
-
[19] Gottlieb, D., Heideman, W., Saba, J.D., TheDPL1Gene Is Involved in Mediating the Response to Nutrient Deprivation inSaccharomyces cerevisiae. Mol. Cell Biol. Res. Commun. 1 (1999), 66–71, 10.1006/mcbr.1999.0109.
-
(1999)
Mol. Cell Biol. Res. Commun.
, vol.1
, pp. 66-71
-
-
Gottlieb, D.1
Heideman, W.2
Saba, J.D.3
-
20
-
-
84897954101
-
Sphingolipid homeostasis in the web of metabolic routes
-
[20] Aguilera-Romero, A., Gehin, C., Riezman, H., Sphingolipid homeostasis in the web of metabolic routes. Biochim. Biophys. Acta 1841 (2014), 647–656, 10.1016/j.bbalip.2013.10.014.
-
(2014)
Biochim. Biophys. Acta
, vol.1841
, pp. 647-656
-
-
Aguilera-Romero, A.1
Gehin, C.2
Riezman, H.3
-
21
-
-
84922024272
-
Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids
-
[21] Kondo, N., Ohno, Y., Yamagata, M., Obara, T., Seki, N., Kitamura, T., et al. Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids. Nat. Commun. 5 (2014), 1–11, 10.1038/ncomms6338.
-
(2014)
Nat. Commun.
, vol.5
, pp. 1-11
-
-
Kondo, N.1
Ohno, Y.2
Yamagata, M.3
Obara, T.4
Seki, N.5
Kitamura, T.6
-
22
-
-
0030701535
-
Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p
-
[22] Haak, D., Gable, K., Beeler, T., Dunn, T., Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. J. Biol. Chem. 272 (1997), 29704–29710.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 29704-29710
-
-
Haak, D.1
Gable, K.2
Beeler, T.3
Dunn, T.4
-
23
-
-
0032429260
-
Homologs of the yeast longevity gene LAG1 in Caenorhabditis elegans and human
-
[23] Jiang, J.C., Kirchman, P.A., Zagulski, M., Hunt, J., Jazwinski, S.M., Homologs of the yeast longevity gene LAG1 in Caenorhabditis elegans and human. Genome Res. 8 (1998), 1259–1272, 10.1101/gr.8.12.1259.
-
(1998)
Genome Res.
, vol.8
, pp. 1259-1272
-
-
Jiang, J.C.1
Kirchman, P.A.2
Zagulski, M.3
Hunt, J.4
Jazwinski, S.M.5
-
24
-
-
0032910193
-
Two endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins
-
[24] Barz, W.P., Walter, P., Two endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins. Mol. Biol. Cell 10 (1999), 1043–1059.
-
(1999)
Mol. Biol. Cell
, vol.10
, pp. 1043-1059
-
-
Barz, W.P.1
Walter, P.2
-
25
-
-
15444364432
-
Lip1p: a novel subunit of acyl-CoA ceramide synthase
-
[25] Vallée, B., Riezman, H., Lip1p: a novel subunit of acyl-CoA ceramide synthase. EMBO J. 24 (2005), 730–741, 10.1038/sj.emboj.7600562.
-
(2005)
EMBO J.
, vol.24
, pp. 730-741
-
-
Vallée, B.1
Riezman, H.2
-
26
-
-
0034629140
-
Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity
-
[26] Mao, C., Xu, R., Bielawska, A., Obeid, L.M., Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity. J. Biol. Chem. 275 (2000), 6876–6884.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 6876-6884
-
-
Mao, C.1
Xu, R.2
Bielawska, A.3
Obeid, L.M.4
-
27
-
-
0034613279
-
Cloning and characterization of a Saccharomyces cerevisiae alkaline ceramidase with specificity for dihydroceramide
-
[27] Mao, C., Xu, R., Bielawska, A., Szulc, Z.M., Obeid, L.M., Cloning and characterization of a Saccharomyces cerevisiae alkaline ceramidase with specificity for dihydroceramide. J. Biol. Chem. 275 (2000), 31369–31378, 10.1074/jbc.M003683200.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 31369-31378
-
-
Mao, C.1
Xu, R.2
Bielawska, A.3
Szulc, Z.M.4
Obeid, L.M.5
-
28
-
-
84959241810
-
One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy
-
[28] Yofe, I., Weill, U., Meurer, M., Chuartzman, S., Zalckvar, E., Goldman, O., et al. One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat. Methods, 2016, 10.1038/nmeth.3795.
-
(2016)
Nat. Methods
-
-
Yofe, I.1
Weill, U.2
Meurer, M.3
Chuartzman, S.4
Zalckvar, E.5
Goldman, O.6
-
29
-
-
0032521056
-
Synthesis of monohydroxylated inositolphosphorylceramide (IPC-C) in Saccharomyces cerevisiae requires Scs7p, a protein with both a cytochrome b5-like domain and a hydroxylase/desaturase domain
-
[29] Dunn, T.M., Haak, D., Monaghan, E., Beeler, T.J., Synthesis of monohydroxylated inositolphosphorylceramide (IPC-C) in Saccharomyces cerevisiae requires Scs7p, a protein with both a cytochrome b5-like domain and a hydroxylase/desaturase domain. Yeast 14 (1998), 311–321, 10.1002/(SICI)1097-0061(19980315)14:4<311::AID-YEA220>3.0.CO;2-B.
-
(1998)
Yeast
, vol.14
, pp. 311-321
-
-
Dunn, T.M.1
Haak, D.2
Monaghan, E.3
Beeler, T.J.4
-
30
-
-
0030764368
-
SUR1 (CSG1/BCL21), a gene necessary for growth of Saccharomyces cerevisiae in the presence of high Ca2 + concentrations at 37 degrees C, is required for mannosylation of inositolphosphorylceramide
-
[30] Beeler, T.J., Fu, D., Rivera, J., Monaghan, E., Gable, K., Dunn, T.M., SUR1 (CSG1/BCL21), a gene necessary for growth of Saccharomyces cerevisiae in the presence of high Ca2 + concentrations at 37 degrees C, is required for mannosylation of inositolphosphorylceramide. Mol. Gen. Genet. 255 (1997), 570–579.
-
(1997)
Mol. Gen. Genet.
, vol.255
, pp. 570-579
-
-
Beeler, T.J.1
Fu, D.2
Rivera, J.3
Monaghan, E.4
Gable, K.5
Dunn, T.M.6
-
31
-
-
0028862822
-
The AUR1 gene in Saccharomyces cerevisiae encodes dominant resistance to the antifungal agent aureobasidin A (LY295337)
-
[31] Heidler, S.A., Radding, J.A., The AUR1 gene in Saccharomyces cerevisiae encodes dominant resistance to the antifungal agent aureobasidin A (LY295337). Antimicrob. Agents Chemother. 39 (1995), 2765–2769.
-
(1995)
Antimicrob. Agents Chemother.
, vol.39
, pp. 2765-2769
-
-
Heidler, S.A.1
Radding, J.A.2
-
32
-
-
0030970048
-
Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene
-
[32] Nagiec, M.M., Nagiec, E.E., Baltisberger, J.A., Wells, G.B., Lester, R.L., Dickson, R.C., Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J. Biol. Chem. 272 (1997), 9809–9817.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 9809-9817
-
-
Nagiec, M.M.1
Nagiec, E.E.2
Baltisberger, J.A.3
Wells, G.B.4
Lester, R.L.5
Dickson, R.C.6
-
33
-
-
70350091277
-
Kei1: a novel subunit of inositolphosphorylceramide synthase, essential for its enzyme activity and Golgi localization
-
[33] Sato, K., Noda, Y., Yoda, K., Kei1: a novel subunit of inositolphosphorylceramide synthase, essential for its enzyme activity and Golgi localization. Mol. Biol. Cell 20 (2009), 4444–4457, 10.1091/mbc.E09-03-0235.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 4444-4457
-
-
Sato, K.1
Noda, Y.2
Yoda, K.3
-
34
-
-
0033944545
-
Inositol phosphorylceramide synthase is located in the Golgi apparatus of Saccharomyces cerevisiae
-
[34] Levine, T.P., Wiggins, C.A., Munro, S., Inositol phosphorylceramide synthase is located in the Golgi apparatus of Saccharomyces cerevisiae. Mol. Biol. Cell 11 (2000), 2267–2281.
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 2267-2281
-
-
Levine, T.P.1
Wiggins, C.A.2
Munro, S.3
-
35
-
-
0242496935
-
Csg1p and Newly Identified Csh1p Function in Mannosylinositol Phosphorylceramide Synthesis by Interacting with Csg2p
-
[35] Uemura, S., Kihara, A., Inokuchi, J.I., Igarashi, Y., Csg1p and Newly Identified Csh1p Function in Mannosylinositol Phosphorylceramide Synthesis by Interacting with Csg2p. J. Biol. Chem. 278 (2003), 45049–45055, 10.1074/jbc.M305498200.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 45049-45055
-
-
Uemura, S.1
Kihara, A.2
Inokuchi, J.I.3
Igarashi, Y.4
-
36
-
-
0028168830
-
Suppressors of the Ca(2 +)-sensitive yeast mutant (csg2) identify genes involved in sphingolipid biosynthesis. Cloning and characterization of SCS1, a gene required for serine palmitoyltransferase activity
-
[36] Zhao, C., Beeler, T., Dunn, T., Suppressors of the Ca(2 +)-sensitive yeast mutant (csg2) identify genes involved in sphingolipid biosynthesis. Cloning and characterization of SCS1, a gene required for serine palmitoyltransferase activity. J. Biol. Chem. 269 (1994), 21480–21488.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 21480-21488
-
-
Zhao, C.1
Beeler, T.2
Dunn, T.3
-
37
-
-
0030669755
-
Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) gene
-
[37] Dickson, R.C., Nagiec, E.E., Wells, G.B., Nagiec, M.M., Lester, R.L., Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) gene. J. Biol. Chem. 272 (1997), 29620–29625.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 29620-29625
-
-
Dickson, R.C.1
Nagiec, E.E.2
Wells, G.B.3
Nagiec, M.M.4
Lester, R.L.5
-
38
-
-
84996495065
-
Identification of ISC1 (YER019w) as Inositol Phosphosphingolipid Phospholipase C inSaccharomyces cerevisiae
-
[38] Sawai, H., Okamoto, Y., Luberto, C., Mao, C., Bielawska, A., Domae, N., et al. Identification of ISC1 (YER019w) as Inositol Phosphosphingolipid Phospholipase C inSaccharomyces cerevisiae. 2000.
-
(2000)
-
-
Sawai, H.1
Okamoto, Y.2
Luberto, C.3
Mao, C.4
Bielawska, A.5
Domae, N.6
-
39
-
-
1642564715
-
Activation and localization of inositol phosphosphingolipid phospholipase C, Isc1p, to the mitochondria during growth of Saccharomyces cerevisiae
-
[39] Vaena de Avalos, S., Okamoto, Y., Hannun, Y.A., Activation and localization of inositol phosphosphingolipid phospholipase C, Isc1p, to the mitochondria during growth of Saccharomyces cerevisiae. J. Biol. Chem. 279 (2004), 11537–11545, 10.1074/jbc.M309586200.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 11537-11545
-
-
Vaena de Avalos, S.1
Okamoto, Y.2
Hannun, Y.A.3
-
40
-
-
14844293078
-
The phosphatidylglycerol/cardiolipin biosynthetic pathway is required for the activation of inositol phosphosphingolipid phospholipase C, Isc1p, during growth of Saccharomyces cerevisiae
-
[40] Vaena de Avalos, S., Su, X., Zhang, M., Okamoto, Y., Dowhan, W., Hannun, Y.A., The phosphatidylglycerol/cardiolipin biosynthetic pathway is required for the activation of inositol phosphosphingolipid phospholipase C, Isc1p, during growth of Saccharomyces cerevisiae. J. Biol. Chem. 280 (2005), 7170–7177, 10.1074/jbc.M411058200.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 7170-7177
-
-
Vaena de Avalos, S.1
Su, X.2
Zhang, M.3
Okamoto, Y.4
Dowhan, W.5
Hannun, Y.A.6
-
41
-
-
36048969412
-
Isc1 regulates sphingolipid metabolism in yeast mitochondria
-
[41] Kitagaki, H., Cowart, L.A., Matmati, N., Vaena de Avalos, S., Novgorodov, S.A., Zeidan, Y.H., et al. Isc1 regulates sphingolipid metabolism in yeast mitochondria. Biochim. Biophys. Acta 1768 (2007), 2849–2861, 10.1016/j.bbamem.2007.07.019.
-
(2007)
Biochim. Biophys. Acta
, vol.1768
, pp. 2849-2861
-
-
Kitagaki, H.1
Cowart, L.A.2
Matmati, N.3
Vaena de Avalos, S.4
Novgorodov, S.A.5
Zeidan, Y.H.6
-
42
-
-
80054079107
-
Sphingolipid and Glycosphingolipid Metabolic Pathways in the Era of Sphingolipidomics
-
[42] Merrill, A.H. Jr., Sphingolipid and Glycosphingolipid Metabolic Pathways in the Era of Sphingolipidomics. Chem. Rev. 111 (2011), 6387–6422, 10.1021/cr2002917.
-
(2011)
Chem. Rev.
, vol.111
, pp. 6387-6422
-
-
Merrill, A.H.1
-
43
-
-
2542558105
-
DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine
-
[43] Omae, F., Miyazaki, M., Enomoto, A., Suzuki, M., Suzuki, Y., Suzuki, A., DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine. Biochem. J. 379 (2004), 687–695, 10.1042/BJ20031425.
-
(2004)
Biochem. J.
, vol.379
, pp. 687-695
-
-
Omae, F.1
Miyazaki, M.2
Enomoto, A.3
Suzuki, M.4
Suzuki, Y.5
Suzuki, A.6
-
44
-
-
33746036905
-
Dihydroceramide:sphinganine C-4-hydroxylation requires Des2 hydroxylase and the membrane form of cytochrome b5
-
[44] Enomoto, A., Omae, F., Miyazaki, M., Kozutsumi, Y., Yubisui, T., Suzuki, A., Dihydroceramide:sphinganine C-4-hydroxylation requires Des2 hydroxylase and the membrane form of cytochrome b5. Biochem. J. 397 (2006), 289–295, 10.1042/BJ20051938.
-
(2006)
Biochem. J.
, vol.397
, pp. 289-295
-
-
Enomoto, A.1
Omae, F.2
Miyazaki, M.3
Kozutsumi, Y.4
Yubisui, T.5
Suzuki, A.6
-
45
-
-
10344226727
-
The Human FA2H Gene Encodes a Fatty Acid 2-Hydroxylase
-
[45] Alderson, N.L., Rembiesa, B.M., Walla, M.D., Bielawska, A., Bielawski, J., Hama, H., The Human FA2H Gene Encodes a Fatty Acid 2-Hydroxylase. J. Biol. Chem. 279 (2004), 48562–48568, 10.1074/jbc.M406649200.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 48562-48568
-
-
Alderson, N.L.1
Rembiesa, B.M.2
Walla, M.D.3
Bielawska, A.4
Bielawski, J.5
Hama, H.6
-
46
-
-
84893350157
-
2'-Hydroxy ceramide in membrane homeostasis and cell signaling
-
[46] Kota, V., Hama, H., 2'-Hydroxy ceramide in membrane homeostasis and cell signaling. Adv. Biol. Regul. 54 (2014), 223–230, 10.1016/j.jbior.2013.09.012.
-
(2014)
Adv. Biol. Regul.
, vol.54
, pp. 223-230
-
-
Kota, V.1
Hama, H.2
-
47
-
-
0029142888
-
Inhibition of sphingolipid synthesis: effects on glycosphingolipid-GPI-anchored protein microdomains
-
[47] Futerman, A.H., Inhibition of sphingolipid synthesis: effects on glycosphingolipid-GPI-anchored protein microdomains. Trends Cell Biol. 5 (1995), 377–380.
-
(1995)
Trends Cell Biol.
, vol.5
, pp. 377-380
-
-
Futerman, A.H.1
-
48
-
-
84897954511
-
Ceramide synthases as potential targets for therapeutic intervention in human diseases
-
[48] Park, J.-W., Park, W.-J., Futerman, A.H., Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim. Biophys. Acta 1841 (2014), 671–681, 10.1016/j.bbalip.2013.08.019.
-
(2014)
Biochim. Biophys. Acta
, vol.1841
, pp. 671-681
-
-
Park, J.-W.1
Park, W.-J.2
Futerman, A.H.3
-
49
-
-
0029075192
-
Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin
-
[49] Miyake, Y., Kozutsumi, Y., Nakamura, S., Fujita, T., Kawasaki, T., Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem. Biophys. Res. Commun. 211 (1995), 396–403, 10.1006/bbrc.1995.1827.
-
(1995)
Biochem. Biophys. Res. Commun.
, vol.211
, pp. 396-403
-
-
Miyake, Y.1
Kozutsumi, Y.2
Nakamura, S.3
Fujita, T.4
Kawasaki, T.5
-
50
-
-
0029012233
-
Regulation of lipid biosynthesis in Saccharomyces cerevisiae by fumonisin B1
-
[50] Wu, W.I., McDonough, V.M., Nickels, J.T., Ko, J., Fischl, A.S., Vales, T.R., et al. Regulation of lipid biosynthesis in Saccharomyces cerevisiae by fumonisin B1. J. Biol. Chem. 270 (1995), 13171–13178.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 13171-13178
-
-
Wu, W.I.1
McDonough, V.M.2
Nickels, J.T.3
Ko, J.4
Fischl, A.S.5
Vales, T.R.6
-
51
-
-
0029079287
-
The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. Producing organism, fermentation, isolation, and biological activity
-
[51] Mandala, S.M., Thornton, R.A., Frommer, B.R., Curotto, J.E., Rozdilsky, W., Kurtz, M.B., et al. The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. Producing organism, fermentation, isolation, and biological activity. J. Antibiot. 48 (1995), 349–356.
-
(1995)
J. Antibiot.
, vol.48
, pp. 349-356
-
-
Mandala, S.M.1
Thornton, R.A.2
Frommer, B.R.3
Curotto, J.E.4
Rozdilsky, W.5
Kurtz, M.B.6
-
52
-
-
0033406057
-
Inhibition of yeast inositol phosphorylceramide synthase by aureobasidin A measured by a fluorometric assay
-
[52] Zhong, W., Murphy, D.J., Georgopapadakou, N.H., Inhibition of yeast inositol phosphorylceramide synthase by aureobasidin A measured by a fluorometric assay. FEBS Lett. 463 (1999), 241–244.
-
(1999)
FEBS Lett.
, vol.463
, pp. 241-244
-
-
Zhong, W.1
Murphy, D.J.2
Georgopapadakou, N.H.3
-
53
-
-
59749093576
-
Inhibition of inositol phosphorylceramide synthase by the cyclic peptide aureobasidin A
-
[53] Aeed, P.A., Young, C.L., Nagiec, M.M., Elhammer, A.P., Inhibition of inositol phosphorylceramide synthase by the cyclic peptide aureobasidin A. Antimicrob. Agents Chemother. 53 (2009), 496–504, 10.1128/AAC.00633-08.
-
(2009)
Antimicrob. Agents Chemother.
, vol.53
, pp. 496-504
-
-
Aeed, P.A.1
Young, C.L.2
Nagiec, M.M.3
Elhammer, A.P.4
-
54
-
-
84873414589
-
Accurate quantification of lipid species by electrospray ionization mass spectrometry—meets a key challenge in lipidomics
-
[54] Yang, K., Han, X., Accurate quantification of lipid species by electrospray ionization mass spectrometry—meets a key challenge in lipidomics. Metabolites, 2011.
-
(2011)
Metabolites
-
-
Yang, K.1
Han, X.2
-
55
-
-
33744472183
-
Mass spectrometry-based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerevisiae
-
[55] Guan, X.L., Wenk, M.R., Mass spectrometry-based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerevisiae. Yeast 23 (2006), 465–477, 10.1002/yea.1362.
-
(2006)
Yeast
, vol.23
, pp. 465-477
-
-
Guan, X.L.1
Wenk, M.R.2
-
56
-
-
77956042565
-
Yeast lipid analysis and quantification by mass spectrometry
-
[56] Guan, X.L., Riezman, I., Wenk, M.R., Riezman, H., Yeast lipid analysis and quantification by mass spectrometry. Methods Enzymol. 470 (2010), 369–391, 10.1016/S0076-6879(10)70015-X.
-
(2010)
Methods Enzymol.
, vol.470
, pp. 369-391
-
-
Guan, X.L.1
Riezman, I.2
Wenk, M.R.3
Riezman, H.4
-
57
-
-
84883336761
-
Lipidomic Profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii Reveals Critical Changes in Lipid Composition in Response to Acetic Acid Stress
-
e73936
-
[57] Lindberg, L., Santos, A.X., Riezman, H., Olsson, L., Bettiga, M., Lipidomic Profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii Reveals Critical Changes in Lipid Composition in Response to Acetic Acid Stress. PLoS ONE, 8, 2013, e73936, 10.1371/journal.pone.0073936.s007.
-
(2013)
PLoS ONE
, vol.8
-
-
Lindberg, L.1
Santos, A.X.2
Riezman, H.3
Olsson, L.4
Bettiga, M.5
-
58
-
-
84966304379
-
Author's Accepted Manuscript
-
[58] Savoglidis, G., da Silveira Dos Santos, A.X., Riezman, I., Angelino, P., Riezman, H., Hatzimanikatis, V., Author's Accepted Manuscript. Metab. Eng., 2016, 1–38, 10.1016/j.ymben.2016.04.002.
-
(2016)
Metab. Eng.
, pp. 1-38
-
-
Savoglidis, G.1
da Silveira Dos Santos, A.X.2
Riezman, I.3
Angelino, P.4
Riezman, H.5
Hatzimanikatis, V.6
-
59
-
-
84971254755
-
Following the flux of long-chain bases through the sphingolipid pathway in vivo using mass spectrometry
-
[59] Martínez-Montañés, F., Schneiter, R., Following the flux of long-chain bases through the sphingolipid pathway in vivo using mass spectrometry. J. Lipid Res. 57 (2016), 906–915, 10.1194/jlr.D066472.
-
(2016)
J. Lipid Res.
, vol.57
, pp. 906-915
-
-
Martínez-Montañés, F.1
Schneiter, R.2
-
60
-
-
84860014018
-
Flexibility of a eukaryotic lipidome—insights from yeast lipidomics
-
e35063
-
[60] Klose, C., Surma, M.A., Gerl, M.J., Meyenhofer, F., Shevchenko, A., Simons, K., Flexibility of a eukaryotic lipidome—insights from yeast lipidomics. PLoS ONE, 7, 2012, e35063, 10.1371/journal.pone.0035063.
-
(2012)
PLoS ONE
, vol.7
-
-
Klose, C.1
Surma, M.A.2
Gerl, M.J.3
Meyenhofer, F.4
Shevchenko, A.5
Simons, K.6
-
61
-
-
62449212220
-
Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inositolphosphorylceramides
-
[61] Cerantola, V., Guillas, I., Roubaty, C., Vionnet, C., Uldry, D., Knudsen, J., et al. Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inositolphosphorylceramides. Mol. Microbiol. 71 (2009), 1523–1537, 10.1111/j.1365-2958.2009.06628.x.
-
(2009)
Mol. Microbiol.
, vol.71
, pp. 1523-1537
-
-
Cerantola, V.1
Guillas, I.2
Roubaty, C.3
Vionnet, C.4
Uldry, D.5
Knudsen, J.6
-
62
-
-
84865195294
-
An essential function of sphingolipids in yeast cell division
-
[62] Epstein, S., Castillon, G.A., Qin, Y., Riezman, H., An essential function of sphingolipids in yeast cell division. Mol. Microbiol. 84 (2012), 1018–1032, 10.1111/j.1365-2958.2012.08087.x.
-
(2012)
Mol. Microbiol.
, vol.84
, pp. 1018-1032
-
-
Epstein, S.1
Castillon, G.A.2
Qin, Y.3
Riezman, H.4
-
63
-
-
84970024994
-
Tools for the analysis of metabolic flux through the sphingolipid pathway
-
[63] Martínez-Montañés, F., Schneiter, R., Tools for the analysis of metabolic flux through the sphingolipid pathway. Biochimie, 2016, 10.1016/j.biochi.2016.05.009.
-
(2016)
Biochimie
-
-
Martínez-Montañés, F.1
Schneiter, R.2
-
64
-
-
40849120821
-
Ergosterol promotes pheromone signaling and plasma membrane fusion in mating yeast
-
[64] Jin, H., McCaffery, J.M., Grote, E., Ergosterol promotes pheromone signaling and plasma membrane fusion in mating yeast. J. Cell Biol. 180 (2008), 813–826, 10.1083/jcb.200705076.
-
(2008)
J. Cell Biol.
, vol.180
, pp. 813-826
-
-
Jin, H.1
McCaffery, J.M.2
Grote, E.3
-
65
-
-
84964824063
-
Ceramide signals for initiation of yeast mating-specific cell cycle arrest
-
[65] Villasmil, M.L., Fransisco, J., Gallo-Ebert, C., Donigan, M., Liu, H.-Y., Brower, M., et al. Ceramide signals for initiation of yeast mating-specific cell cycle arrest. Cell Cycle, 2016, 10.1080/15384101.2015.1127475.
-
(2016)
Cell Cycle
-
-
Villasmil, M.L.1
Fransisco, J.2
Gallo-Ebert, C.3
Donigan, M.4
Liu, H.-Y.5
Brower, M.6
-
66
-
-
84975298036
-
Substrate specificity, kinetic properties and inhibition by fumonisin B1 of ceramide synthase isoforms from Arabidopsis
-
[66] Luttgeharm, K.D., Cahoon, E.B., Markham, J.E., Substrate specificity, kinetic properties and inhibition by fumonisin B1 of ceramide synthase isoforms from Arabidopsis. Biochem. J. 473 (2016), 593–603, 10.1042/BJ20150824.
-
(2016)
Biochem. J.
, vol.473
, pp. 593-603
-
-
Luttgeharm, K.D.1
Cahoon, E.B.2
Markham, J.E.3
-
67
-
-
84855839328
-
Biochemical and Biophysical Research Communications
-
[67] Tani, M., Kuge, O., Biochemical and Biophysical Research Communications. Biochem. Biophys. Res. Commun. 417 (2012), 673–678, 10.1016/j.bbrc.2011.11.138.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.417
, pp. 673-678
-
-
Tani, M.1
Kuge, O.2
-
68
-
-
84899869931
-
A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell
-
[68] Clay, L., Caudron, F., Denoth-Lippuner, A., Boettcher, B., A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. eLife, 2014, 10.7554/eLife.01883.017.
-
(2014)
eLife
-
-
Clay, L.1
Caudron, F.2
Denoth-Lippuner, A.3
Boettcher, B.4
-
69
-
-
65249154315
-
Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology
-
[69] Guan, X.L., Souza, C.M., Pichler, H., Dewhurst, G., Schaad, O., Kajiwara, K., et al. Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol. Biol. Cell 20 (2009), 2083–2095, 10.1091/mbc.E08-11-1126.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 2083-2095
-
-
Guan, X.L.1
Souza, C.M.2
Pichler, H.3
Dewhurst, G.4
Schaad, O.5
Kajiwara, K.6
-
70
-
-
0031452645
-
Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae
-
[70] Jenkins, G.M., Richards, A., Wahl, T., Mao, C., Obeid, L., Hannun, Y., Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J. Biol. Chem. 272 (1997), 32566–32572.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 32566-32572
-
-
Jenkins, G.M.1
Richards, A.2
Wahl, T.3
Mao, C.4
Obeid, L.5
Hannun, Y.6
-
71
-
-
14444283860
-
Sphingolipids are potential heat stress signals in Saccharomyces
-
[71] Dickson, R.C., Nagiec, E.E., Skrzypek, M., Tillman, P., Wells, G.B., Lester, R.L., Sphingolipids are potential heat stress signals in Saccharomyces. J. Biol. Chem. 272 (1997), 30196–30200.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 30196-30200
-
-
Dickson, R.C.1
Nagiec, E.E.2
Skrzypek, M.3
Tillman, P.4
Wells, G.B.5
Lester, R.L.6
-
72
-
-
0032571231
-
Heat-induced elevation of ceramide in Saccharomyces cerevisiae via de novo synthesis
-
[72] Wells, G.B., Dickson, R.C., Lester, R.L., Heat-induced elevation of ceramide in Saccharomyces cerevisiae via de novo synthesis. J. Biol. Chem. 273 (1998), 7235–7243.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 7235-7243
-
-
Wells, G.B.1
Dickson, R.C.2
Lester, R.L.3
-
73
-
-
84873448614
-
Iron, glucose and intrinsic factors alter sphingolipid composition as yeast cells enter stationary phase
-
[73] Lester, R.L., Withers, B.R., Schultz, M.A., Dickson, R.C., Iron, glucose and intrinsic factors alter sphingolipid composition as yeast cells enter stationary phase. Biochim. Biophys. Acta 1831 (2013), 726–736, 10.1016/j.bbalip.2012.12.012.
-
(2013)
Biochim. Biophys. Acta
, vol.1831
, pp. 726-736
-
-
Lester, R.L.1
Withers, B.R.2
Schultz, M.A.3
Dickson, R.C.4
-
74
-
-
79953211538
-
Yeast cells lacking all known ceramide synthases continue to make complex sphingolipids and to incorporate ceramides into glycosylphosphatidylinositol (GPI) anchors
-
[74] Vionnet, C., Roubaty, C., Ejsing, C.S., Knudsen, J., Conzelmann, A., Yeast cells lacking all known ceramide synthases continue to make complex sphingolipids and to incorporate ceramides into glycosylphosphatidylinositol (GPI) anchors. J. Biol. Chem. 286 (2011), 6769–6779.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 6769-6779
-
-
Vionnet, C.1
Roubaty, C.2
Ejsing, C.S.3
Knudsen, J.4
Conzelmann, A.5
-
75
-
-
80051669921
-
Generic sorting of raft lipids into secretory vesicles in yeast
-
[75] Surma, M.A., Klose, C., Klemm, R.W., Ejsing, C.S., Simons, K., Generic sorting of raft lipids into secretory vesicles in yeast. Traffic 12 (2011), 1139–1147, 10.1111/j.1600-0854.2011.01221.x.
-
(2011)
Traffic
, vol.12
, pp. 1139-1147
-
-
Surma, M.A.1
Klose, C.2
Klemm, R.W.3
Ejsing, C.S.4
Simons, K.5
-
76
-
-
84879044368
-
Identification of C18:1-phytoceramide as the candidate lipid mediator for hydroxyurea resistance in yeast
-
[76] Matmati, N., Metelli, A., Tripathi, K., Yan, S., Mohanty, B.K., Hannun, Y.A., Identification of C18:1-phytoceramide as the candidate lipid mediator for hydroxyurea resistance in yeast. J. Biol. Chem. 288 (2013), 17272–17284, 10.1074/jbc.M112.444802.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 17272-17284
-
-
Matmati, N.1
Metelli, A.2
Tripathi, K.3
Yan, S.4
Mohanty, B.K.5
Hannun, Y.A.6
|