메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1-201

A gentle introduction to support vector machines in biomedicine: Volume 2: Case studies and benchmarks

Author keywords

[No Author keywords available]

Indexed keywords

PATTERN RECOGNITION;

EID: 84995493653     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1142/7923     Document Type: Book
Times cited : (12)

References (121)
  • 1
    • 76749137632 scopus 로고    scopus 로고
    • Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification. Part I: Algorithms and Empirical Evaluation
    • Aliferis CF, etal. (2010a) Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification. Part I: Algorithms and Empirical Evaluation. Journal of Machine Learning Research 11: 171-234.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 171-234
    • Aliferis, C.F.1
  • 2
    • 76749122843 scopus 로고    scopus 로고
    • Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification. Part II: Analysis and Extensions
    • Aliferis CF, etal. (2010b) Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification. Part II: Analysis and Extensions. Journal of Machine Learning Research 11: 235-284.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 235-284
    • Aliferis, C.F.1
  • 4
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh AA, et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403: 503-511.
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.A.1
  • 5
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U, etal. (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96: 6745-6750.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 6745-6750
    • Alon, U.1
  • 6
    • 35748929116 scopus 로고    scopus 로고
    • Text categorization models for identifying unproven cancer treatments on the web
    • Aphinyanaphongs Y, Aliferis CF. (2007) Text categorization models for identifying unproven cancer treatments on the web. Stud Health Technol Inform 129: 968-972.
    • (2007) Stud Health Technol Inform , vol.129 , pp. 968-972
    • Aphinyanaphongs, Y.1    Aliferis, C.F.2
  • 7
    • 34748902861 scopus 로고    scopus 로고
    • Prospective validation of text categorization models for identifying high- quality content-specific articles in PubMed
    • Aphinyanaphongs Y, Aliferis CF. (2006) Prospective validation of text categorization models for identifying high- quality content-specific articles in PubMed. AMIA 2006 Annual Symposium Proceedings.
    • (2006) AMIA 2006 Annual Symposium Proceedings
    • Aphinyanaphongs, Y.1    Aliferis, C.F.2
  • 8
    • 33745407892 scopus 로고    scopus 로고
    • A comparison of citation metrics to machine learning filters for the identification ofhigh quality MEDLINE documents
    • Aphinyanaphongs Y, Statnikov A, Aliferis CF. (2006) A comparison of citation metrics to machine learning filters for the identification ofhigh quality MEDLINE documents. JAm Med Inform Assoc 13: 446-455.
    • (2006) Jam Med Inform Assoc , vol.13 , pp. 446-455
    • Aphinyanaphongs, Y.1    Statnikov, A.2    Aliferis, C.F.3
  • 9
    • 14544274562 scopus 로고    scopus 로고
    • Text categorization models for high-quality article retrieval in internal medicine
    • Aphinyanaphongs Y. etal. (2005) Text categorization models for high-quality article retrieval in internal medicine. J. Am. Med. Inform. Assoc., 12, 207-216.
    • (2005) J. Am. Med. Inform. Assoc , vol.12 , pp. 207-216
    • Aphinyanaphongs, Y.1
  • 10
    • 0038284723 scopus 로고    scopus 로고
    • Dermoscopy of pigmented skin lesions: Results of a consensus meeting via the Internet
    • Argenziano G, etal. (2003) Dermoscopy of pigmented skin lesions: results of a consensus meeting via the Internet. J Am Acad Dermatol 48: 679-693.
    • (2003) J am Acad Dermatol , vol.48 , pp. 679-693
    • Argenziano, G.1
  • 11
    • 18544375333 scopus 로고    scopus 로고
    • MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
    • Armstrong SA, et al. (2002) MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30: 41-47.
    • (2002) Nat Genet , vol.30 , pp. 41-47
    • Armstrong, S.A.1
  • 12
    • 18544365698 scopus 로고    scopus 로고
    • Gene-expression profiles predict survival of patients with lung adenocarcinoma
    • Beer DG, et al. (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 8: 816-824.
    • (2002) Nat Med , vol.8 , pp. 816-824
    • Beer, D.G.1
  • 14
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    • Bhattacharjee A, et al. (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 98: 13790-13795.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 13790-13795
    • Bhattacharjee, A.1
  • 15
    • 0028915293 scopus 로고
    • Epiluminescence Microscopy. A Useful Tool for the Diagnosis of Pigmented Skin Lesions for Formally Trained Dermatologists
    • Binder M, et al. (1995) Epiluminescence Microscopy. A Useful Tool for the Diagnosis of Pigmented Skin Lesions for Formally Trained Dermatologists. Archives of Dermatology 131:3 286-291.
    • (1995) Archives of Dermatology , vol.131 , Issue.3 , pp. 286-291
    • Binder, M.1
  • 16
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • Braga-Neto UM, Dougherty ER. (2004) Is cross-validation valid for small-sample microarray classification? Bioinformatics 20: 374-380.
    • (2004) Bioinformatics , vol.20 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 17
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. (2001) Random forests. Machine Learning 45: 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 19
    • 23944478358 scopus 로고    scopus 로고
    • Life-threatening interaction between complementary medicines: Cyanide toxicity following ingestion of amygdalin and vitamin C
    • Bromley J, etal. (2005) Life-threatening interaction between complementary medicines: cyanide toxicity following ingestion of amygdalin and vitamin C. The Annals of pharmacotherapy 39: 1566-1569.
    • (2005) Annals of Pharmacotherapy , vol.39 , pp. 1566-1569
    • Bromley, J.1
  • 20
    • 77952243141 scopus 로고    scopus 로고
    • QIIME allows analysis of high-throughput community sequencing data
    • Caporaso JG, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335-336.
    • (2010) Nat Methods , vol.7 , pp. 335-336
    • Caporaso, J.G.1
  • 21
    • 33747873786 scopus 로고    scopus 로고
    • Multi-class feature selection for texture classification
    • Chen X, Zeng X, van Alphen D. (2006) Multi-class feature selection for texture classification. Pattern Recognition Letters 27: 1685-1691.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 1685-1691
    • Chen, X.1    Zeng, X.2    Van Alphen, D.3
  • 22
    • 2942581832 scopus 로고    scopus 로고
    • High-resolution serum proteomic features for ovarian cancer detection
    • Conrads TP, et al. (2004) High-resolution serum proteomic features for ovarian cancer detection. Endocr Relat Cancer 11: 163-178.
    • (2004) Endocr Relat Cancer , vol.11 , pp. 163-178
    • Conrads, T.P.1
  • 25
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • DeLong ER, DeLong DM, Clarke-Pearson DL. (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44: 837-845.
    • (1988) Biometrics , vol.44 , pp. 837-845
    • Delong, E.R.1    Delong, D.M.2    Clarke-Pearson, D.L.3
  • 27
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Diaz-Uriarte R, Alvarez de Andres S. (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7: 3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    Alvarez De Andres, S.2
  • 28
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich TG. (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10: 1895-1923.
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 29
    • 36749001490 scopus 로고    scopus 로고
    • Extracting drug-drug interaction articles from MEDLINE to improve the content of drug databases
    • Duda S, et al. (2005) Extracting drug-drug interaction articles from MEDLINE to improve the content of drug databases. AMIA 2005 Annual Symposium Proceedings 216-220.
    • (2005) AMIA 2005 Annual Symposium Proceedings , pp. 216-220
    • Duda, S.1
  • 30
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP. (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97: 77-88.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-88
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 32
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A library for large linear classification
    • Fan RE, et al. (2008) LIBLINEAR: A library for large linear classification. The Journal of Machine Learning Research 9: 1871-1874.
    • (2008) The Journal of Machine Learning Research , vol.9 , pp. 1871-1874
    • Fan, R.E.1
  • 34
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman G. (2003) An extensive empirical study of feature selection metrics for text classification. The Journal of Machine Learning Research 3: 1289-1305.
    • (2003) The Journal of Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 35
  • 36
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund Y. (1995) Boosting a weak learning algorithm by majority. Information and computation 121: 256-285.
    • (1995) Information and Computation , vol.121 , pp. 256-285
    • Freund, Y.1
  • 37
    • 77955841698 scopus 로고    scopus 로고
    • Using content-based and bibliometric features for machine learning models to predict citation counts in the biomedical literature
    • Fu LD, Aliferis CF. (2010) Using content-based and bibliometric features for machine learning models to predict citation counts in the biomedical literature. Scientometrics 85: 257-270.
    • (2010) Scientometrics , vol.85 , pp. 257-270
    • Fu, L.D.1    Aliferis, C.F.2
  • 38
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T S, etal. (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16: 906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1
  • 40
    • 34548105186 scopus 로고    scopus 로고
    • Large-scale Bayesian logistic regression for text categorization
    • Genkin A, Lewis DD, Madigan D. (2007) Large-scale Bayesian logistic regression for text categorization. Technometrics 49:291-304.
    • (2007) Technometrics , vol.49 , pp. 291-304
    • Genkin, A.1    Lewis, D.D.2    Madigan, D.3
  • 41
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR, et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286: 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 46
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, et al. (2002) Gene selection for cancer classification using support vector machines. Machine Learning 46: 389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1
  • 47
    • 0034610258 scopus 로고    scopus 로고
    • Fatal hepatorenal failure associated with hydrazine sulfate
    • Hainer MI, et al. (2000) Fatal hepatorenal failure associated with hydrazine sulfate. Annals of internal medicine 133: 877.
    • (2000) Annals of Internal Medicine , vol.133 , pp. 877
    • Hainer, M.I.1
  • 49
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell FE Jr, Lee KL, Mark DB. (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15: 361-387.
    • (1996) Stat Med , vol.15 , pp. 361-387
    • Harrell, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 51
    • 0028541191 scopus 로고
    • Developing optimal search strategies for detecting clinically sound studies in MEDLINE
    • Haynes RB, etal. (1994) Developing optimal search strategies for detecting clinically sound studies in MEDLINE. JAm Med Inform Assoc 1: 447-458.
    • (1994) Jam Med Inform Assoc , vol.1 , pp. 447-458
    • Haynes, R.B.1
  • 54
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu CW, Lin CJ. (2002) A comparison of methods for multiclass support vector machines. Neural Networks, IEEE Transactions on 13: 415-425.
    • (2002) Neural Networks, IEEE Transactions On , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 55
    • 0037443891 scopus 로고    scopus 로고
    • Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection
    • Iizuka N, et al. (2003) Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet 361: 923-929.
    • (2003) Lancet , vol.361 , pp. 923-929
    • Iizuka, N.1
  • 57
    • 0034567340 scopus 로고    scopus 로고
    • Predicting ICU mortality: A comparison of stationary and nonsta- tionary temporal models
    • Kayaalp M, Cooper GF, Clermont G. (2000) Predicting ICU mortality: a comparison of stationary and nonsta- tionary temporal models. Proc AMIA Symp 418-422.
    • (2000) Proc AMIA Symp , pp. 418-422
    • Kayaalp, M.1    Cooper, G.F.2    Clermont, G.3
  • 58
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • Khan J, etal. (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7: 673-679.
    • (2001) Nat Med , vol.7 , pp. 673-679
    • Khan, J.1
  • 61
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John GH. (1997) Wrappers for feature subset selection. Artificial Intelligence 97: 273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 62
    • 0002229304 scopus 로고    scopus 로고
    • Pairwise classification and support vector machines
    • Smola A, etal. (eds), MIT Press, Cambridge, MA
    • Kressel U. (1999) Pairwise classification and support vector machines. In: Smola A, etal. (eds), Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA, pp. 255-268.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 255-268
    • Kressel, U.1
  • 63
    • 1542376755 scopus 로고    scopus 로고
    • Evaluation of five full-text drug databases by pharmacy students, faculty, and librarians: Do the groups agree?
    • Kupferberg N, Jones HL. (2004) Evaluation of five full-text drug databases by pharmacy students, faculty, and librarians: do the groups agree? J Med Libr Assoc 92: 66-71.
    • (2004) J Med Libr Assoc , vol.92 , pp. 66-71
    • Kupferberg, N.1    Jones, H.L.2
  • 64
    • 0036161242 scopus 로고    scopus 로고
    • Text categorization with support vector machines. How to represent texts in input space?
    • Leopold E, Kindermann J. (2002) Text categorization with support vector machines. How to represent texts in input space? Machine Learning 46: 423-444.
    • (2002) Machine Learning , vol.46 , pp. 423-444
    • Leopold, E.1    Kindermann, J.2
  • 65
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw A, Wiener M. (2002) Classification and regression by randomForest. R News 2: 18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 68
    • 0037543670 scopus 로고    scopus 로고
    • Classical statistical approaches to molecular classification of cancer from gene expression profiling
    • Lu J, etal. (2002) Classical statistical approaches to molecular classification of cancer from gene expression profiling. Methods of microarray data analysis 97-108.
    • (2002) Methods of Microarray Data Analysis , pp. 97-108
    • Lu, J.1
  • 70
    • 0033257801 scopus 로고    scopus 로고
    • A Study in Causal Discovery from Population-Based Infant Birth and Death Records
    • Mani S, Cooper GF. (1999) A Study in Causal Discovery from Population-Based Infant Birth and Death Records. Proceedings of the AMIA Annual Fall Symposium 319.
    • (1999) Proceedings of the AMIA Annual Fall Symposium , pp. 319
    • Mani, S.1    Cooper, G.F.2
  • 72
  • 75
    • 0002431740 scopus 로고    scopus 로고
    • Automatic construction of decision trees from data: A multi-disciplinary survey
    • Murthy SK. (1998) Automatic construction of decision trees from data: a multi-disciplinary survey. Data Mining and Knowledge Discovery 2: 345-389.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 345-389
    • Murthy, S.K.1
  • 76
    • 0028293225 scopus 로고
    • The ABCD rule of dermatoscopy. High prospective value in the diagnosis of doubtful melanocytic skin lesions
    • Nachbar F, et al. (1994) The ABCD rule of dermatoscopy. High prospective value in the diagnosis of doubtful melanocytic skin lesions. J Am Acad Dermatol 30: 551-559.
    • (1994) J am Acad Dermatol , vol.30 , pp. 551-559
    • Nachbar, F.1
  • 77
    • 0037381008 scopus 로고    scopus 로고
    • Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
    • Nutt CL, et al. (2003) Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 63: 1602-1607.
    • (2003) Cancer Res , vol.63 , pp. 1602-1607
    • Nutt, C.L.1
  • 78
    • 33745456986 scopus 로고    scopus 로고
    • Core transcriptional regulatory circuitry in human hepatocytes
    • Odom DT, et al. (2006) Core transcriptional regulatory circuitry in human hepatocytes. Mol Syst Biol 2: 2006.
    • (2006) Mol Syst Biol , vol.2 , pp. 2006
    • Odom, D.T.1
  • 79
    • 84973318190 scopus 로고    scopus 로고
    • The PageRank citation ranking: Bringing order to the web
    • Page L, et al. (1999) The PageRank citation ranking: Bringing order to the web. Technical Report, Stanford University.
    • (1999) Technical Report, Stanford University
    • Page, L.1
  • 80
    • 0038240088 scopus 로고    scopus 로고
    • Diagnosis of Pigmented Skin Lesions by Dermoscopy: Web-based Training Improves Diagnostic Performance of Non-experts
    • Pagnanelli G, et al. (2003) Diagnosis of Pigmented Skin Lesions by Dermoscopy: Web-based Training Improves Diagnostic Performance of Non-experts. British Journal of Dermatology 148:4 698-702.
    • (2003) British Journal of Dermatology , vol.148 , Issue.4 , pp. 698-702
    • Pagnanelli, G.1
  • 82
    • 0023204735 scopus 로고
    • In vivo epiluminescence microscopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions
    • Pehamberger H, Steiner A, Wolff K. (1987) In vivo epiluminescence microscopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions. J Am Acad Dermatol 17: 571-583.
    • (1987) J am Acad Dermatol , vol.17 , pp. 571-583
    • Pehamberger, H.1    Steiner, A.2    Wolff, K.3
  • 83
    • 0000014932 scopus 로고    scopus 로고
    • A compendium ofissues for citation analysis
    • Phelan TJ. (1999) A compendium ofissues for citation analysis. Scientometrics 45: 117-136.
    • (1999) Scientometrics , vol.45 , pp. 117-136
    • Phelan, T.J.1
  • 84
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • Smola A, etal. (eds), MIT press, Cambridge, MA
    • Platt JC. (1999) Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Smola A, etal. (eds), Advances in Large Margin Classifiers. MIT press, Cambridge, MA.
    • (1999) Advances in Large Margin Classifiers
    • Platt, J.C.1
  • 86
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • Pomeroy SL, et al. (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415: 436-442.
    • (2002) Nature , vol.415 , pp. 436-442
    • Pomeroy, S.L.1
  • 88
    • 0346095546 scopus 로고    scopus 로고
    • Computerized physician order entry and medication errors in a pediatric critical care unit
    • Potts AL, et al. (2004) Computerized physician order entry and medication errors in a pediatric critical care unit. Pediatrics 113: 59-63.
    • (2004) Pediatrics , vol.113 , pp. 59-63
    • Potts, A.L.1
  • 89
    • 0037226593 scopus 로고    scopus 로고
    • A molecular signature of metastasis in primary solid tumors
    • Ramaswamy S, etal. (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33: 49-54.
    • (2003) Nat Genet , pp. 49-54
    • Ramaswamy, S.1
  • 90
    • 0347201147 scopus 로고    scopus 로고
    • Multiclass cancer diagnosis using tumor gene expression signatures
    • Ramaswamy S. et al. (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 98: 15149-15154.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 15149-15154
    • Ramaswamy, S.1
  • 91
    • 0033918159 scopus 로고    scopus 로고
    • Complementary/alternative medicine use in a comprehensive cancer center and the implications for oncology
    • Richardson MA, etal. (2000) Complementary/alternative medicine use in a comprehensive cancer center and the implications for oncology. Journal of Clinical Oncology 18: 2505.
    • (2000) Journal of Clinical Oncology , vol.18 , pp. 2505
    • Richardson, M.A.1
  • 92
    • 1642502427 scopus 로고    scopus 로고
    • An analytical method for multi-class molecular cancer classification
    • Rifkin R, et al. (2003) An analytical method for multi-class molecular cancer classification. SIAM Reviews 45: 706-723.
    • (2003) SIAM Reviews , vol.45 , pp. 706-723
    • Rifkin, R.1
  • 93
    • 0037142053 scopus 로고    scopus 로고
    • The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
    • Rosenwald A, et al. (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346: 1937-1947.
    • (2002) N Engl J Med , vol.346 , pp. 1937-1947
    • Rosenwald, A.1
  • 94
    • 39049183773 scopus 로고    scopus 로고
    • Modeling clinical judgment and implicit guideline compliance in the diagnosis of melanomas using machine learning
    • Sboner A, Aliferis CF. (2005) Modeling clinical judgment and implicit guideline compliance in the diagnosis of melanomas using machine learning. AMIA 2005 Annual Symposium Proceedings 664-668.
    • (2005) AMIA 2005 Annual Symposium Proceedings , pp. 664-668
    • Sboner, A.1    Aliferis, C.F.2
  • 95
    • 84957085334 scopus 로고    scopus 로고
    • Theoretical views of boosting and applications
    • Schapire R. (1999) Theoretical views of boosting and applications. Algorithmic Learning Theory 13-25.
    • (1999) Algorithmic Learning Theory , pp. 13-25
    • Schapire, R.1
  • 96
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • Schapire RE, Singer Y. (2000) BoosTexter: A boosting-based system for text categorization. Machine Learning 39: 135-168.
    • (2000) Machine Learning , vol.39 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 97
    • 0031850626 scopus 로고    scopus 로고
    • Citation rates and journal impact factors are not suitable for evaluation of research
    • Seglen PO. (1998) Citation rates and journal impact factors are not suitable for evaluation of research. Acta Orthopaedica Scandinavica 69: 224.
    • (1998) Acta Orthopaedica Scandinavica , vol.69 , pp. 224
    • Seglen, P.O.1
  • 98
    • 0030372023 scopus 로고    scopus 로고
    • On combining artificial neural nets
    • Sharkey AJC. (1996) On combining artificial neural nets. Connection Science 8: 299-314.
    • (1996) Connection Science , vol.8 , pp. 299-314
    • Sharkey, A.J.C.1
  • 99
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • Shipp MA, et al. (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8: 68-74.
    • (2002) Nat Med , vol.8 , pp. 68-74
    • Shipp, M.A.1
  • 101
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh D, et al. (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1: 203-209.
    • (2002) Cancer Cell , vol.1 , pp. 203-209
    • Singh, D.1
  • 102
    • 2942729844 scopus 로고    scopus 로고
    • Herbal remedies in the United States: Potential adverse interactions with anticancer agents
    • Sparreboom A, et al. (2004) Herbal remedies in the United States: potential adverse interactions with anticancer agents. Journal of Clinical Oncology 22: 2489-2503.
    • (2004) Journal of Clinical Oncology , vol.22 , pp. 2489-2503
    • Sparreboom, A.1
  • 103
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht DF. (1990) Probabilistic neural networks. Neural Networks 3: 109-118.
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 105
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • Statnikov A, Wang L, Aliferis CF. (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 9: 319.
    • (2008) BMC Bioinformatics , vol.9 , pp. 319
    • Statnikov, A.1    Wang, L.2    Aliferis, C.F.3
  • 106
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Statnikov A, etal. (2005) A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21: 631-643.
    • (2005) Bioinformatics , vol.21 , pp. 631-643
    • Statnikov, A.1
  • 108
    • 0035845531 scopus 로고    scopus 로고
    • Chemosensitivity prediction by transcriptional profiling
    • Staunton JE, et al. (2001) Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci USA 98: 10787-10792.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 10787-10792
    • Staunton, J.E.1
  • 109
    • 0035887459 scopus 로고    scopus 로고
    • Molecular classification of human carcinomas by use of gene expression signatures
    • Su AI, et al. (2001) Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res 61: 7388-7393.
    • (2001) Cancer Res , vol.61 , pp. 7388-7393
    • Su, A.I.1
  • 113
    • 0141459848 scopus 로고    scopus 로고
    • Bagged ensembles of support vector machines for gene expression data analysis
    • Valentini G, Muselli M, Ruffino F. (2003) Bagged ensembles of support vector machines for gene expression data analysis. IEEE pp. 1844-1849.
    • (2003) IEEE , pp. 1844-1849
    • Valentini, G.1    Muselli, M.2    Ruffino, F.3
  • 114
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • van’t Veer LJ, et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530-536.
    • (2002) Nature , vol.415 , pp. 530-536
    • Van’ T Veer, L.J.1
  • 116
    • 13844310310 scopus 로고    scopus 로고
    • Gene-expression profiles to predict distant metastasis oflymph-node-negative primary breast cancer
    • Wang Y, etal. (2005) Gene-expression profiles to predict distant metastasis oflymph-node-negative primary breast cancer. Lancet 365: 671-679.
    • (2005) Lancet , vol.365 , pp. 671-679
    • Wang, Y.1
  • 118
    • 0347994074 scopus 로고    scopus 로고
    • Graphical exploration of gene expression data: A comparative study of three multivariate methods
    • Wouters L, et al. (2003) Graphical exploration of gene expression data: a comparative study of three multivariate methods. Biometrics 59: 1131-1139.
    • (2003) Biometrics , vol.59 , pp. 1131-1139
    • Wouters, L.1
  • 119
    • 19044399684 scopus 로고    scopus 로고
    • Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
    • Yeoh EJ, etal. (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133-143.
    • (2002) Cancer Cell , vol.1 , pp. 133-143
    • Yeoh, E.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.