메뉴 건너뛰기




Volumn 1720, Issue , 1999, Pages 13-25

Theoretical, views of boosting and applications

Author keywords

[No Author keywords available]

Indexed keywords

GAME THEORY;

EID: 84957085334     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-46769-6_2     Document Type: Conference Paper
Times cited : (90)

References (45)
  • 2
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • March
    • Peter L. Bartlett. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44(2):525-536, March 1998.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 3
    • 0001931577 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • to appear
    • Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, to appear.
    • Machine Learning
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 0001160588 scopus 로고
    • What size net gives valid generalization
    • Eric B. Baum and David Haussler. What size net gives valid generalization? Neural Computation, 1(1):151-160, 1989.
    • (1989) Neural Computation , vol.1 , Issue.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 6
    • 0004198448 scopus 로고    scopus 로고
    • Technical Report 486, Statistics Department, University of California at Berkeley
    • Leo Breiman. Arcing the edge. Technical Report 486, Statistics Department, University of California at Berkeley, 1997.
    • (1997) Arcing the edge
    • Breiman, L.1
  • 7
    • 0003929807 scopus 로고    scopus 로고
    • Technical Report 504, Statistics Department, University of California at Berkeley
    • Leo Breiman. Prediction games and arcing classifiers. Technical Report 504, Statistics Department, University of California at Berkeley, 1997.
    • (1997) Prediction games and arcing classifiers
    • Breiman, L.1
  • 8
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Leo Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801-849, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 11
    • 34249753618 scopus 로고
    • Support-vector networks
    • September
    • Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, September 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 0001823341 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • to appear
    • Thomas G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, to appear.
    • Machine Learning
    • Dietterich, T.G.1
  • 13
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • January
    • Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2:263-286, January 1995.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 16
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Yoav Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256-285, 1995.
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 22
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • August
    • Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, August 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 27
    • 0032632353 scopus 로고    scopus 로고
    • Using decision trees to construct a practical parser
    • Masahiko Haruno, Satoshi Shirai, and Yoshifumi Ooyama. Using decision trees to construct a practical parser. Machine Learning, 34:131-149, 1999.
    • (1999) Machine Learning , vol.34 , pp. 131-149
    • Haruno, M.1    Shirai, S.2    Ooyama, Y.3
  • 30
    • 0028324717 scopus 로고
    • Cryptographic limitations on learning Boolean formulae and finite automata
    • January
    • Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the Association for Computing Machinery, 41(1):67-95, January 1994.
    • (1994) Journal of the Association for Computing Machinery , vol.41 , Issue.1 , pp. 67-95
    • Kearns, M.1    Valiant, L.G.2
  • 36
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 39
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • October
    • Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686, October 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 41
    • 84880677797 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • to appear
    • Robert E. Schapire and Yoram Singer. BoosTexter: A boosting-based system for text categorization. Machine Learning, to appear.
    • Machine Learning
    • Schapire, R.E.1    Singer, Y.2
  • 44
    • 0021518106 scopus 로고
    • A theory of the learnable
    • November
    • L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, November 1984.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.