메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 627-650

Trust region Newton method for large-scale logistic regression

Author keywords

Conjugate gradient; Logistic regression; Newton method; Support vector machines; Trust region

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTATIONAL LINGUISTICS; CONVERGENCE OF NUMERICAL METHODS; FOOD PROCESSING; INFORMATION RETRIEVAL SYSTEMS; LOGISTICS; NATURAL LANGUAGE PROCESSING SYSTEMS; NEWTON-RAPHSON METHOD; SUPPORT VECTOR MACHINES;

EID: 44649088319     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (351)

References (30)
  • 1
    • 44649093297 scopus 로고    scopus 로고
    • Arthur Asuncion and David J. Newman. UCI machine learning repository, 2007. URL http://www.ics.uci.edu/$\sim$mlearn/{MLR}epository.html.
    • Arthur Asuncion and David J. Newman. UCI machine learning repository, 2007. URL http://www.ics.uci.edu/$\sim$mlearn/{MLR}epository.html.
  • 3
    • 0141982347 scopus 로고    scopus 로고
    • A limited memory variable metric method for bound constrained minimization
    • Argonne National Laboratory, Argonne, Illinois
    • Steven Benson and Jorge J. Moré. A limited memory variable metric method for bound constrained minimization. Preprint MCS-P909-0901, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, 2001.
    • (2001) Preprint MCS-P909-0901, Mathematics and Computer Science Division
    • Benson, S.1    Moré, J.J.2
  • 6
    • 0001573124 scopus 로고
    • Generalized iterative scaling for log-linear models
    • John N. Darroch and Douglas Ratcliff. Generalized iterative scaling for log-linear models. The Annals of Mathematical Statistics, 43(5): 1470-1480, 1972.
    • (1972) The Annals of Mathematical Statistics , vol.43 , Issue.5 , pp. 1470-1480
    • Darroch, J.N.1    Ratcliff, D.2
  • 8
    • 33745800994 scopus 로고    scopus 로고
    • Sequential conditional generalized iterative scaling
    • Joshua Goodman. Sequential conditional generalized iterative scaling. InACL, pages 9-16, 2002.
    • (2002) ACL , pp. 9-16
    • Goodman, J.1
  • 11
    • 3042616550 scopus 로고    scopus 로고
    • Decomposition methods for linear support vector machines
    • URL
    • Wei-Chun Kao, Kai-Min Chung, Chia-Liang Sun, and Chih-Jen Lin. Decomposition methods for linear support vector machines. Neural Computation, 16(8): 1689-1704, 2004. URL http://www.csie.ntu.edu.tw/-cjlin/ papers/linear.pdf.
    • (2004) Neural Computation , vol.16 , Issue.8 , pp. 1689-1704
    • Kao, W.-C.1    Chung, K.-M.2    Sun, C.-L.3    Lin, C.-J.4
  • 12
    • 21844461582 scopus 로고    scopus 로고
    • A modified finite Newton method for fast solution of large scale linear SVMs
    • S. Sathiya Keerthi and Dennis DeCoste. A modified finite Newton method for fast solution of large scale linear SVMs. Journal of Machine Learning Research, 6:341-361, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 341-361
    • Sathiya Keerthi, S.1    DeCoste, D.2
  • 13
    • 34547688865 scopus 로고    scopus 로고
    • An interior-point method for large-scale 11-regularized logistic regression
    • URL
    • Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. An interior-point method for large-scale 11-regularized logistic regression. Journal of Machine Learning Research, 8:1519-1555, 2007. URL http://www.stanford.edu/~boyd/ 11_logistic_reg.html.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1519-1555
    • Koh, K.1    Kim, S.-J.2    Boyd, S.3
  • 14
    • 33845197904 scopus 로고    scopus 로고
    • Making logistic regression a core data mining tool: A practical investigation of accuracy, speed, and simplicity
    • Technical Report TR-05-27, Robotics Institute, Carnegie Mellon University
    • Paul Komarek and Andrew W. Moore. Making logistic regression a core data mining tool: A practical investigation of accuracy, speed, and simplicity. Technical Report TR-05-27, Robotics Institute, Carnegie Mellon University, 2005.
    • (2005)
    • Komarek, P.1    Moore, A.W.2
  • 15
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research, 5:361-397, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 16
    • 0033436056 scopus 로고    scopus 로고
    • Newton's method for large-scale bound constrained problems
    • Chih-Jen Lin and Jorge J. Moré. Newton's method for large-scale bound constrained problems. SIAM Journal on Optimization, 9:1100-1127, 1999.
    • (1999) SIAM Journal on Optimization , vol.9 , pp. 1100-1127
    • Lin, C.-J.1    Moré, J.J.2
  • 18
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45(1):503-528, 1989.
    • (1989) Mathematical Programming , vol.45 , Issue.1 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 19
    • 1042264823 scopus 로고    scopus 로고
    • A comparison of algorithms for maximum entropy parameter estimation
    • Association for Computational Linguistics
    • Robert Malouf. A comparison of algorithms for maximum entropy parameter estimation. In Proceedings of the 6th conference on Natural language learning, pages 1-7. Association for Computational Linguistics, 2002.
    • (2002) Proceedings of the 6th conference on Natural language learning , pp. 1-7
    • Malouf, R.1
  • 20
    • 0036817951 scopus 로고    scopus 로고
    • A finite Newton method for classification
    • Olvi L. Mangasarian. A finite Newton method for classification. Optimization Methods and Software, 17(5):913-929, 2002.
    • (2002) Optimization Methods and Software , vol.17 , Issue.5 , pp. 913-929
    • Mangasarian, O.L.1
  • 23
    • 0001684438 scopus 로고
    • A numerical study of the limited memory BFGS method and the truncated-newton method for large scale optimization
    • Jorge Nocedal and Stephen G. Nash. A numerical study of the limited memory BFGS method and the truncated-newton method for large scale optimization. SIAM Journal on Optimization, 1(3): 358-372, 1991.
    • (1991) SIAM Journal on Optimization , vol.1 , Issue.3 , pp. 358-372
    • Nocedal, J.1    Nash, S.G.2
  • 25
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Cambridge, MA, MIT Press
    • John C. Piatt. Fast training of support vector machines using sequential minimal optimization. In Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, Cambridge, MA, 1998. MIT Press.
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Piatt, J.C.1
  • 27
    • 85162015906 scopus 로고    scopus 로고
    • Bundle methods for machine learning
    • J.C. Piatt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
    • Alex J. Smola, SVN Vishwanathan, and Quoc Le. Bundle methods for machine learning. In J.C. Piatt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press, Cambridge, MA, 2008.
    • (2008) Advances in Neural Information Processing Systems 20
    • Smola, A.J.1    Vishwanathan, S.V.N.2    Le, Q.3
  • 28
    • 0000305846 scopus 로고
    • The conjugate gradient method and trust regions in large scale optimization
    • Trond Steihaug. The conjugate gradient method and trust regions in large scale optimization. SIAM Journal on Numerical Analysis, 20:626-637, 1983.
    • (1983) SIAM Journal on Numerical Analysis , vol.20 , pp. 626-637
    • Steihaug, T.1
  • 29
    • 33750032384 scopus 로고    scopus 로고
    • An introduction to conditional random fields for relational learning
    • Lise Getoor and Ben Taskar, editors, MIT Press
    • Charles Sutton and Andrew McCallum. An introduction to conditional random fields for relational learning. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical Relational Learning. MIT Press, 2006.
    • (2006) Introduction to Statistical Relational Learning
    • Sutton, C.1    McCallum, A.2
  • 30
    • 44649128583 scopus 로고    scopus 로고
    • Xiaolei Zou, I. Michael Navon, M. Berger, P. K. H. Phua, Tamar Schlick, and F.X. Le Dimet. Numerical experience with limited-memory quasi-Newton and truncated Newton methods. SIAM Journal on Optimization, 3(3):582-608, 1993.
    • Xiaolei Zou, I. Michael Navon, M. Berger, P. K. H. Phua, Tamar Schlick, and F.X. Le Dimet. Numerical experience with limited-memory quasi-Newton and truncated Newton methods. SIAM Journal on Optimization, 3(3):582-608, 1993.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.