-
1
-
-
44649093297
-
-
Arthur Asuncion and David J. Newman. UCI machine learning repository, 2007. URL http://www.ics.uci.edu/$\sim$mlearn/{MLR}epository.html.
-
Arthur Asuncion and David J. Newman. UCI machine learning repository, 2007. URL http://www.ics.uci.edu/$\sim$mlearn/{MLR}epository.html.
-
-
-
-
3
-
-
0141982347
-
A limited memory variable metric method for bound constrained minimization
-
Argonne National Laboratory, Argonne, Illinois
-
Steven Benson and Jorge J. Moré. A limited memory variable metric method for bound constrained minimization. Preprint MCS-P909-0901, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, 2001.
-
(2001)
Preprint MCS-P909-0901, Mathematics and Computer Science Division
-
-
Benson, S.1
Moré, J.J.2
-
5
-
-
0343524143
-
-
Preprint MCS-P635-0197, Argonne National Laboratory, Argonne, Illinois
-
Ali Bouaricha, Jorge J. Moré, and Zhijun Wu. Newton's method for large-scale optimization. Preprint MCS-P635-0197, Argonne National Laboratory, Argonne, Illinois, 1997.
-
(1997)
Newton's method for large-scale optimization
-
-
Bouaricha, A.1
Moré, J.J.2
Wu, Z.3
-
6
-
-
0001573124
-
Generalized iterative scaling for log-linear models
-
John N. Darroch and Douglas Ratcliff. Generalized iterative scaling for log-linear models. The Annals of Mathematical Statistics, 43(5): 1470-1480, 1972.
-
(1972)
The Annals of Mathematical Statistics
, vol.43
, Issue.5
, pp. 1470-1480
-
-
Darroch, J.N.1
Ratcliff, D.2
-
8
-
-
33745800994
-
Sequential conditional generalized iterative scaling
-
Joshua Goodman. Sequential conditional generalized iterative scaling. InACL, pages 9-16, 2002.
-
(2002)
ACL
, pp. 9-16
-
-
Goodman, J.1
-
11
-
-
3042616550
-
Decomposition methods for linear support vector machines
-
URL
-
Wei-Chun Kao, Kai-Min Chung, Chia-Liang Sun, and Chih-Jen Lin. Decomposition methods for linear support vector machines. Neural Computation, 16(8): 1689-1704, 2004. URL http://www.csie.ntu.edu.tw/-cjlin/ papers/linear.pdf.
-
(2004)
Neural Computation
, vol.16
, Issue.8
, pp. 1689-1704
-
-
Kao, W.-C.1
Chung, K.-M.2
Sun, C.-L.3
Lin, C.-J.4
-
12
-
-
21844461582
-
A modified finite Newton method for fast solution of large scale linear SVMs
-
S. Sathiya Keerthi and Dennis DeCoste. A modified finite Newton method for fast solution of large scale linear SVMs. Journal of Machine Learning Research, 6:341-361, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 341-361
-
-
Sathiya Keerthi, S.1
DeCoste, D.2
-
13
-
-
34547688865
-
An interior-point method for large-scale 11-regularized logistic regression
-
URL
-
Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. An interior-point method for large-scale 11-regularized logistic regression. Journal of Machine Learning Research, 8:1519-1555, 2007. URL http://www.stanford.edu/~boyd/ 11_logistic_reg.html.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1519-1555
-
-
Koh, K.1
Kim, S.-J.2
Boyd, S.3
-
14
-
-
33845197904
-
Making logistic regression a core data mining tool: A practical investigation of accuracy, speed, and simplicity
-
Technical Report TR-05-27, Robotics Institute, Carnegie Mellon University
-
Paul Komarek and Andrew W. Moore. Making logistic regression a core data mining tool: A practical investigation of accuracy, speed, and simplicity. Technical Report TR-05-27, Robotics Institute, Carnegie Mellon University, 2005.
-
(2005)
-
-
Komarek, P.1
Moore, A.W.2
-
15
-
-
84876811202
-
RCV1: A new benchmark collection for text categorization research
-
David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research, 5:361-397, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 361-397
-
-
Lewis, D.D.1
Yang, Y.2
Rose, T.G.3
Li, F.4
-
16
-
-
0033436056
-
Newton's method for large-scale bound constrained problems
-
Chih-Jen Lin and Jorge J. Moré. Newton's method for large-scale bound constrained problems. SIAM Journal on Optimization, 9:1100-1127, 1999.
-
(1999)
SIAM Journal on Optimization
, vol.9
, pp. 1100-1127
-
-
Lin, C.-J.1
Moré, J.J.2
-
18
-
-
33646887390
-
On the limited memory BFGS method for large scale optimization
-
Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45(1):503-528, 1989.
-
(1989)
Mathematical Programming
, vol.45
, Issue.1
, pp. 503-528
-
-
Liu, D.C.1
Nocedal, J.2
-
19
-
-
1042264823
-
A comparison of algorithms for maximum entropy parameter estimation
-
Association for Computational Linguistics
-
Robert Malouf. A comparison of algorithms for maximum entropy parameter estimation. In Proceedings of the 6th conference on Natural language learning, pages 1-7. Association for Computational Linguistics, 2002.
-
(2002)
Proceedings of the 6th conference on Natural language learning
, pp. 1-7
-
-
Malouf, R.1
-
20
-
-
0036817951
-
A finite Newton method for classification
-
Olvi L. Mangasarian. A finite Newton method for classification. Optimization Methods and Software, 17(5):913-929, 2002.
-
(2002)
Optimization Methods and Software
, vol.17
, Issue.5
, pp. 913-929
-
-
Mangasarian, O.L.1
-
23
-
-
0001684438
-
A numerical study of the limited memory BFGS method and the truncated-newton method for large scale optimization
-
Jorge Nocedal and Stephen G. Nash. A numerical study of the limited memory BFGS method and the truncated-newton method for large scale optimization. SIAM Journal on Optimization, 1(3): 358-372, 1991.
-
(1991)
SIAM Journal on Optimization
, vol.1
, Issue.3
, pp. 358-372
-
-
Nocedal, J.1
Nash, S.G.2
-
24
-
-
0031120321
-
Inducing features of random fields
-
Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380-393, 1997.
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.4
, pp. 380-393
-
-
Della Pietra, S.1
Della Pietra, V.2
Lafferty, J.3
-
25
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Cambridge, MA, MIT Press
-
John C. Piatt. Fast training of support vector machines using sequential minimal optimization. In Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, Cambridge, MA, 1998. MIT Press.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
-
-
Piatt, J.C.1
-
27
-
-
85162015906
-
Bundle methods for machine learning
-
J.C. Piatt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
-
Alex J. Smola, SVN Vishwanathan, and Quoc Le. Bundle methods for machine learning. In J.C. Piatt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems 20
-
-
Smola, A.J.1
Vishwanathan, S.V.N.2
Le, Q.3
-
28
-
-
0000305846
-
The conjugate gradient method and trust regions in large scale optimization
-
Trond Steihaug. The conjugate gradient method and trust regions in large scale optimization. SIAM Journal on Numerical Analysis, 20:626-637, 1983.
-
(1983)
SIAM Journal on Numerical Analysis
, vol.20
, pp. 626-637
-
-
Steihaug, T.1
-
29
-
-
33750032384
-
An introduction to conditional random fields for relational learning
-
Lise Getoor and Ben Taskar, editors, MIT Press
-
Charles Sutton and Andrew McCallum. An introduction to conditional random fields for relational learning. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical Relational Learning. MIT Press, 2006.
-
(2006)
Introduction to Statistical Relational Learning
-
-
Sutton, C.1
McCallum, A.2
-
30
-
-
44649128583
-
-
Xiaolei Zou, I. Michael Navon, M. Berger, P. K. H. Phua, Tamar Schlick, and F.X. Le Dimet. Numerical experience with limited-memory quasi-Newton and truncated Newton methods. SIAM Journal on Optimization, 3(3):582-608, 1993.
-
Xiaolei Zou, I. Michael Navon, M. Berger, P. K. H. Phua, Tamar Schlick, and F.X. Le Dimet. Numerical experience with limited-memory quasi-Newton and truncated Newton methods. SIAM Journal on Optimization, 3(3):582-608, 1993.
-
-
-
|