메뉴 건너뛰기




Volumn 32, Issue 20, 2016, Pages 3116-3123

iPTM-mLys: Identifying multiple lysine PTM sites and their different types

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID; LYSINE; PROTEIN;

EID: 84995428311     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw380     Document Type: Article
Times cited : (245)

References (79)
  • 1
    • 84944276251 scopus 로고    scopus 로고
    • Identification of heat shock protein families and J-protein types by incorporating dipeptide composition into Chou's general PseAAC
    • Ahmad, S., et al. (2015). Identification of heat shock protein families and J-protein types by incorporating dipeptide composition into Chou's general PseAAC. Comput. Methods Program. Biomed., 122, 165-174
    • (2015) Comput. Methods Program. Biomed , vol.122 , pp. 165-174
    • Ahmad, S.1
  • 2
    • 84953389263 scopus 로고    scopus 로고
    • Prediction of protein submitochondrial locations by incorporating dipeptide composition into chou's general pseudo amino acid composition
    • Ahmad, K., et al. (2016). Prediction of protein submitochondrial locations by incorporating dipeptide composition into chou's general pseudo amino acid composition. J. Membr. Biol, 10.1007/s00232-00015-09868-00238
    • (2016) J. Membr. Biol
    • Ahmad, K.1
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Machine Learn., 45, 5-32
    • (2001) Machine Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 4
    • 84875576158 scopus 로고    scopus 로고
    • Propy: A tool to generate various modes of Chou's PseAAC
    • Cao, D.S., et al. (2013). propy: a tool to generate various modes of Chou's PseAAC. Bioinformatics, 29, 960-962
    • (2013) Bioinformatics , vol.29 , pp. 960-962
    • Cao, D.S.1
  • 5
    • 33747853261 scopus 로고    scopus 로고
    • MeMo: A web tool for prediction of protein methylation modifications
    • Chen, H., et al. (2006). MeMo: a web tool for prediction of protein methylation modifications. Nucleic Acids Res., 34, W249-W253
    • (2006) Nucleic Acids Res , vol.34 , pp. W249-W253
    • Chen, H.1
  • 6
    • 84876053736 scopus 로고    scopus 로고
    • IRSpot-PseDNC: Identify recombination spots with pseudo dinucleotide composition
    • Chen, W., et al. (2013). iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res., 41, e68
    • (2013) Nucleic Acids Res , vol.41 , pp. e68
    • Chen, W.1
  • 7
    • 84900463301 scopus 로고    scopus 로고
    • PseKNC: A flexible web-server for generating pseudo Ktuple nucleotide composition
    • Chen, W., et al. (2014). PseKNC: a flexible web-server for generating pseudo Ktuple nucleotide composition. Anal. Biochem., 456, 53-60
    • (2014) Anal. Biochem , vol.456 , pp. 53-60
    • Chen, W.1
  • 8
    • 84941783146 scopus 로고    scopus 로고
    • Pseudo nucleotide composition or PseKNC: An effective formulation for analyzing genomic sequences
    • Chen, W., et al. (2015). Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol BioSyst, 11, 2620-2634
    • (2015) Mol BioSyst , vol.11 , pp. 2620-2634
    • Chen, W.1
  • 9
    • 84922387565 scopus 로고    scopus 로고
    • PseKNC-General: A cross-platform package for generating various modes of pseudo nucleotide compositions
    • Chen, W., et al. (2015). PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions. Bioinformatics, 31, 119-120
    • (2015) Bioinformatics , vol.31 , pp. 119-120
    • Chen, W.1
  • 10
    • 84962865637 scopus 로고    scopus 로고
    • IACP: A sequence-based tool for identifying anticancer peptides
    • Chen, W., et al. (2016). iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget, 7, 16895-16909
    • (2016) Oncotarget , vol.7 , pp. 16895-16909
    • Chen, W.1
  • 11
    • 85015236342 scopus 로고    scopus 로고
    • IRNA-PseU: Identifying RNA pseudouridine sites
    • Chen, W., et al. (2016). iRNA-PseU: Identifying RNA pseudouridine sites, Molecular Therapy - Nucleic Acids, 5, e332
    • (2016) Molecular Therapy - Nucleic Acids , vol.5 , pp. e332
    • Chen, W.1
  • 12
    • 0030049315 scopus 로고    scopus 로고
    • Review: Prediction of human immunodeficiency virus protease cleavage sites in proteins
    • Chou, K.C. (1996). Review: Prediction of human immunodeficiency virus protease cleavage sites in proteins. Anal. Biochem., 233, 1-14
    • (1996) Anal. Biochem , vol.233 , pp. 1-14
    • Chou, K.C.1
  • 13
    • 0035874091 scopus 로고    scopus 로고
    • Prediction of protein cellular attributes using pseudo amino acid composition
    • Chou, K.C. (2001). Prediction of protein cellular attributes using pseudo amino acid composition. Proteins, 43, 246-255
    • (2001) Proteins , vol.43 , pp. 246-255
    • Chou, K.C.1
  • 14
    • 0035748859 scopus 로고    scopus 로고
    • Prediction of signal peptides using scaled window
    • Chou, K.C. (2001). Prediction of signal peptides using scaled window. Peptides, 22, 1973-1979
    • (2001) Peptides , vol.22 , pp. 1973-1979
    • Chou, K.C.1
  • 15
    • 12744279642 scopus 로고    scopus 로고
    • Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
    • Chou, K.C. (2005). Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics, 21, 10-19
    • (2005) Bioinformatics , vol.21 , pp. 10-19
    • Chou, K.C.1
  • 16
    • 79951518208 scopus 로고    scopus 로고
    • Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review
    • Chou, K.C. (2011). Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review). J. Theor. Biol., 273, 236-247
    • (2011) J. Theor. Biol , vol.273 , pp. 236-247
    • Chou, K.C.1
  • 17
    • 84877758233 scopus 로고    scopus 로고
    • Some remarks on predicting multi-label attributes in molecular biosystems
    • Chou, K.C. (2013). Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst., 9, 1092-1100
    • (2013) Mol. Biosyst , vol.9 , pp. 1092-1100
    • Chou, K.C.1
  • 18
    • 84926619444 scopus 로고    scopus 로고
    • Impacts of bioinformatics to medicinal chemistry
    • Chou, K.C. (2015). Impacts of bioinformatics to medicinal chemistry. Med. Chem., 11, 218-234
    • (2015) Med. Chem , vol.11 , pp. 218-234
    • Chou, K.C.1
  • 20
    • 18344391868 scopus 로고    scopus 로고
    • Prediction of membrane protein types by incorporating amphipathic effects
    • Chou, K.C., and Cai, Y.D. (2005). Prediction of membrane protein types by incorporating amphipathic effects. J. Chem. Inf. Model., 45, 407-413
    • (2005) J. Chem. Inf. Model , vol.45 , pp. 407-413
    • Chou, K.C.1    Cai, Y.D.2
  • 21
    • 34548606295 scopus 로고    scopus 로고
    • Review: Recent progresses in protein subcellular location prediction
    • Chou, K.C., and Shen, H.B. (2007). Review: Recent progresses in protein subcellular location prediction. Anal. Biochem., 370, 1-16
    • (2007) Anal. Biochem , vol.370 , pp. 1-16
    • Chou, K.C.1    Shen, H.B.2
  • 22
    • 34247544233 scopus 로고    scopus 로고
    • Signal-CF: A subsite-coupled and windowfusing approach for predicting signal peptides
    • Chou, K.C., and Shen, H.B. (2007). Signal-CF: a subsite-coupled and windowfusing approach for predicting signal peptides. Biochem. Biophys. Res. Comm., 357, 633-640
    • (2007) Biochem. Biophys. Res. Comm , vol.357 , pp. 633-640
    • Chou, K.C.1    Shen, H.B.2
  • 23
    • 0029157083 scopus 로고
    • Review: Prediction of protein structural classes
    • Chou, K.C., and Zhang, C.T. (1995). Review: prediction of protein structural classes. Crit. Rev. Biochem. Mol. Biol., 30, 275-349
    • (1995) Crit. Rev. Biochem. Mol. Biol , vol.30 , pp. 275-349
    • Chou, K.C.1    Zhang, C.T.2
  • 24
    • 79953316878 scopus 로고    scopus 로고
    • ILoc-Euk: A multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins
    • Chou, K.C., et al. (2011). iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS One, 6, e18258
    • (2011) PLoS One , vol.6 , pp. e18258
    • Chou, K.C.1
  • 25
    • 84855641685 scopus 로고    scopus 로고
    • ILoc-Hum: Using accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites
    • Chou, K.C., et al. (2012). iLoc-Hum: using accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Molecular Biosystems, 8, 629-641
    • (2012) Molecular Biosystems , vol.8 , pp. 629-641
    • Chou, K.C.1
  • 26
    • 84908072570 scopus 로고    scopus 로고
    • Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou's general PseAAC
    • Dehzangi, A., et al. (2015). Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou's general PseAAC. J. Theor. Biol., 364, 284-294
    • (2015) J. Theor. Biol , vol.364 , pp. 284-294
    • Dehzangi, A.1
  • 27
    • 84859932176 scopus 로고    scopus 로고
    • PseAAC-Builder: A cross-platform stand-Alone program for generating various special Chou's pseudo-Amino acid compositions
    • Du, P., et al. (2012). PseAAC-Builder: A cross-platform stand-Alone program for generating various special Chou's pseudo-Amino acid compositions. Anal. Biochem., 425, 117-119
    • (2012) Anal. Biochem , vol.425 , pp. 117-119
    • Du, P.1
  • 28
    • 84895429516 scopus 로고    scopus 로고
    • PseAAC-General: Fast building various modes of general form of Chou's pseudo-Amino acid composition for large-scale protein datasets
    • Du, P., et al. (2014). PseAAC-General: Fast building various modes of general form of Chou's pseudo-Amino acid composition for large-scale protein datasets. Int. J. Mol. Sci., 15, 3495-3506
    • (2014) Int. J. Mol. Sci , vol.15 , pp. 3495-3506
    • Du, P.1
  • 29
    • 84876379510 scopus 로고    scopus 로고
    • A multilabel model based on Chou's pseudoamino acid composition for identifying membrane proteins with both single and multiple functional types
    • Huang, C., and Yuan, J.Q. (2013). A multilabel model based on Chou's pseudoamino acid composition for identifying membrane proteins with both single and multiple functional types. J. Membr. Biol., 246, 327-334
    • (2013) J. Membr. Biol , vol.246 , pp. 327-334
    • Huang, C.1    Yuan, J.Q.2
  • 30
    • 84928722799 scopus 로고    scopus 로고
    • IPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC
    • Jia, J., et al. (2015). iPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J. Theor. Biol, 377, 47-56
    • (2015) J. Theor. Biol , vol.377 , pp. 47-56
    • Jia, J.1
  • 31
    • 84981217089 scopus 로고    scopus 로고
    • Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition (iPPBS-PseAAC)
    • Jia, J., et al. (2015). Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition (iPPBS-PseAAC). J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2015.1095116
    • (2015) J. Biomol. Struct. Dyn
    • Jia, J.1
  • 32
    • 84973637727 scopus 로고    scopus 로고
    • ICar-PseCp: Identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC
    • Jia, J., et al. (2016). iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget, 7, 34558-34570
    • (2016) Oncotarget , vol.7 , pp. 34558-34570
    • Jia, J.1
  • 33
    • 85000869394 scopus 로고    scopus 로고
    • IPPBS-Opt: A sequence-based Ensemble classifier for identifying protein-protein binding sites by optimizing imbalanced training datasets
    • Jia, J., et al. (2016). iPPBS-Opt: a sequence-based Ensemble classifier for identifying protein-protein binding sites by optimizing imbalanced training datasets. Molecules, 21, 95
    • (2016) Molecules , vol.21 , pp. 95
    • Jia, J.1
  • 34
    • 84961384421 scopus 로고    scopus 로고
    • ISuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset
    • Jia, J., et al. (2016). iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal. Biochem, 497, 48-56
    • (2016) Anal. Biochem , vol.497 , pp. 48-56
    • Jia, J.1
  • 35
    • 84957073578 scopus 로고    scopus 로고
    • Psuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach
    • Jia, J., et al. (2016). pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J. Theor. Biol., 394, 223-230
    • (2016) J. Theor. Biol , vol.394 , pp. 223-230
    • Jia, J.1
  • 36
    • 84995377061 scopus 로고    scopus 로고
    • PSumo-CD: Predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC
    • Jia, J., et al. (2016). pSumo-CD: Predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics, doi: 10.1093/bioinformatics/btw387
    • (2016) Bioinformatics
    • Jia, J.1
  • 37
    • 84955690130 scopus 로고    scopus 로고
    • IRSpot-GAEnsC: Identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples
    • Kabir, M., and Hayat, M. (2016). iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples. Mol. Genet. Genomics, 291, 285-296
    • (2016) Mol. Genet. Genomics , vol.291 , pp. 285-296
    • Kabir, M.1    Hayat, M.2
  • 38
    • 78649326452 scopus 로고    scopus 로고
    • AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties
    • Kandaswamy, K.K., et al. (2011). AFP-Pred: a random forest approach for predicting antifreeze proteins from sequence-derived properties. J. Theor. Biol., 270, 56-62
    • (2011) J. Theor. Biol , vol.270 , pp. 56-62
    • Kandaswamy, K.K.1
  • 39
    • 84911416290 scopus 로고    scopus 로고
    • Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model
    • Khan, Z.U., et al. (2015). Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model. J. Theor. Biol., 365, 197-203
    • (2015) J. Theor. Biol , vol.365 , pp. 197-203
    • Khan, Z.U.1
  • 40
    • 84908628104 scopus 로고    scopus 로고
    • Prediction of beta-lactamase and its class by Chou's pseudo-Amino acid composition and support vector machine
    • Kumar, R., et al. (2015). Prediction of beta-lactamase and its class by Chou's pseudo-Amino acid composition and support vector machine. J. Theor. Biol., 365, 96-103
    • (2015) J. Theor. Biol , vol.365 , pp. 96-103
    • Kumar, R.1
  • 41
    • 84941040066 scopus 로고    scopus 로고
    • IPro54-PseKNC: A sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-Tuple nucleotide composition
    • Lin, H., et al. (2014). iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-Tuple nucleotide composition. Nucleic Acids Res., 42, 12961-12972
    • (2014) Nucleic Acids Res , vol.42 , pp. 12961-12972
    • Lin, H.1
  • 42
    • 84883658706 scopus 로고    scopus 로고
    • Theoretical and experimental biology in one-A symposium in honour of Professor Kuo-Chen Chou's 50th anniversary and Professor Richard Giegé 's 40th anniversary of their scientific careers
    • Lin, S.X., and Lapointe, J. (2013). Theoretical and experimental biology in one-A symposium in honour of Professor Kuo-Chen Chou's 50th anniversary and Professor Richard Giegé 's 40th anniversary of their scientific careers. J. Biomedical Science and Engineering (JBiSE), 6, 435-442
    • (2013) J. Biomedical Science and Engineering (JBiSE) , vol.6 , pp. 435-442
    • Lin, S.X.1    Lapointe, J.2
  • 43
    • 80052855771 scopus 로고    scopus 로고
    • IDNA-Prot: Identification of DNA binding proteins using random forest with grey model
    • Lin, W.Z., et al. (2011). iDNA-Prot: identification of DNA binding proteins using random forest with grey model. PLoS ONE, 6, e24756
    • (2011) PLoS ONE , vol.6 , pp. e24756
    • Lin, W.Z.1
  • 44
    • 84874928986 scopus 로고    scopus 로고
    • ILoc-Animal: A multi-label learning classifier for predicting subcellular localization of animal proteins
    • Lin, W.Z., et al. (2013). iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins. Mol. BioSyst., 9, 634-644
    • (2013) Mol. BioSyst , vol.9 , pp. 634-644
    • Lin, W.Z.1
  • 45
    • 84927712367 scopus 로고    scopus 로고
    • RepDNA: A Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects
    • Liu, B., et al. (2015). repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects. Bioinformatics, 31, 1307-1309
    • (2015) Bioinformatics , vol.31 , pp. 1307-1309
    • Liu, B.1
  • 46
    • 84979865452 scopus 로고    scopus 로고
    • Pse-in-One: A web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
    • Liu, B., et al. (2015). Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res., 43, W65-W71
    • (2015) Nucleic Acids Res , vol.43 , pp. W65-W71
    • Liu, B.1
  • 47
    • 84921023793 scopus 로고    scopus 로고
    • PseDNA-Pro: DNA-binding protein identification by combining Chou's PseAAC and physicochemical distance transformation
    • Liu, B., et al. (2015). PseDNA-Pro: DNA-binding protein identification by combining Chou's PseAAC and physicochemical distance transformation. Mol. Informatics, 34, 8-17
    • (2015) Mol. Informatics , vol.34 , pp. 8-17
    • Liu, B.1
  • 48
    • 84954388556 scopus 로고    scopus 로고
    • IMiRNA-PseDPC: MicroRNA precursor identification with a pseudo distance-pair composition approach
    • Liu, B., et al. (2016). iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach. J. Biomol. Struct. Dyn., 34, 223-235
    • (2016) J. Biomol. Struct. Dyn , vol.34 , pp. 223-235
    • Liu, B.1
  • 49
    • 84962263478 scopus 로고    scopus 로고
    • IEnhancer-2L: A two-layer predictor for identifying enhancers and their strength by pseudo k-Tuple nucleotide composition
    • Liu, B., et al. (2016). iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-Tuple nucleotide composition. Bioinformatics, 32, 362-389
    • (2016) Bioinformatics , vol.32 , pp. 362-389
    • Liu, B.1
  • 50
    • 84983353017 scopus 로고    scopus 로고
    • IDHS-EL: Identifying DNase i hypersensi-Tivesites by fusing three different modes of pseudo nucleotide composition into an en-semble learning framework
    • Liu, B., et al. (2016). iDHS-EL: Identifying DNase I hypersensi-Tivesites by fusing three different modes of pseudo nucleotide composition into an en-semble learning framework. Bioinformatics. doi: 10.1093/bioinformatics/btw186
    • (2016) Bioinformatics
    • Liu, B.1
  • 51
    • 84956829573 scopus 로고    scopus 로고
    • PRNAm-PC: Predicting N-methyladenosine sites in RNA sequences via physical-chemical properties
    • Liu, Z., et al. (2016). pRNAm-PC: Predicting N-methyladenosine sites in RNA sequences via physical-chemical properties. Anal. Biochem., 497, 60-67
    • (2016) Anal. Biochem , vol.497 , pp. 60-67
    • Liu, Z.1
  • 52
    • 84899962803 scopus 로고    scopus 로고
    • Chou's pseudo amino acid composition improves sequence-based antifreeze protein prediction
    • Mondal, S., and Pai, P.P. (2014). Chou's pseudo amino acid composition improves sequence-based antifreeze protein prediction. J. Theor. Biol., 356, 30-35
    • (2014) J. Theor. Biol , vol.356 , pp. 30-35
    • Mondal, S.1    Pai, P.P.2
  • 53
    • 84904722553 scopus 로고    scopus 로고
    • Prediction of protein structure classes by incorporating different protein descriptors into general Chou's pseudo amino acid composition
    • Nanni, L., et al. (2014). Prediction of protein structure classes by incorporating different protein descriptors into general Chou's pseudo amino acid composition. J. Theor. Biol., 360, 109-116
    • (2014) J. Theor. Biol , vol.360 , pp. 109-116
    • Nanni, L.1
  • 54
    • 84858167590 scopus 로고    scopus 로고
    • RSARF: Prediction of residue solvent accessibility from protein sequence using random forest Method
    • Pugalenthi, G., et al. (2012). RSARF: prediction of residue solvent accessibility from protein sequence using random forest method. Protein Peptide Letters, 19, 50-56
    • (2012) Protein Peptide Letters , vol.19 , pp. 50-56
    • Pugalenthi, G.1
  • 55
    • 84902162941 scopus 로고    scopus 로고
    • IMethyl-PseAAC: Identification of Protein Methylation Sites via a Pseudo Amino Acid Composition Approach
    • Qiu, W.R., et al. (2014). iMethyl-PseAAC: Identification of Protein Methylation Sites via a Pseudo Amino Acid Composition Approach. Biomed Res Int (BMRI), 2014, 947416
    • (2014) Biomed Res Int (BMRI) , vol.2014 , pp. 947416
    • Qiu, W.R.1
  • 56
    • 84930570742 scopus 로고    scopus 로고
    • IUbiq-Lys: Prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model
    • Qiu, W.R., et al. (2015). iUbiq-Lys: Prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model. Journal of Biomolecular Structure and Dynamics (JBSD), 33, 1731-1742
    • (2015) Journal of Biomolecular Structure and Dynamics (JBSD) , vol.33 , pp. 1731-1742
    • Qiu, W.R.1
  • 57
    • 84969836704 scopus 로고    scopus 로고
    • IPhos-PseEvo: Identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory
    • Qiu, W.R., et al. (2016). iPhos-PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory. Mol. Informatics. doi: 10.1002/minf.201600010
    • (2016) Mol. Informatics
    • Qiu, W.R.1
  • 58
    • 84978664062 scopus 로고    scopus 로고
    • IPhos-PseEn: Identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier
    • Qiu, W.R., et al. (2016). iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Oncotarget. doi: 10.18632/oncotarget.9987
    • (2016) Oncotarget
    • Qiu, W.R.1
  • 59
    • 84978634483 scopus 로고    scopus 로고
    • IHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC
    • Qiu, W.R., et al. (2016). iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget, 7, 44310-44321
    • (2016) Oncotarget , vol.7 , pp. 44310-44321
    • Qiu, W.R.1
  • 60
    • 62849118051 scopus 로고    scopus 로고
    • Computational identification of protein methylation sites through bi-profile Bayes feature extraction
    • Shao, J., et al. (2009). Computational identification of protein methylation sites through bi-profile Bayes feature extraction. PLoS One, 4, e4920
    • (2009) PLoS One , vol.4 , pp. e4920
    • Shao, J.1
  • 61
    • 34748902270 scopus 로고    scopus 로고
    • Signal-3L: A 3-layer approach for predicting signal peptide
    • Shen, H.B., and Chou, K.C. (2007). Signal-3L: a 3-layer approach for predicting signal peptide. Biochem. Biophys. Res. Comm., 363, 297-303
    • (2007) Biochem. Biophys. Res. Comm , vol.363 , pp. 297-303
    • Shen, H.B.1    Chou, K.C.2
  • 62
    • 33847260136 scopus 로고    scopus 로고
    • Virus-PLoc: A fusion classifier for predicting the subcellular localization of viral proteins within host and virusinfected cells
    • Shen, H.B., and Chou, K.C. (2007). Virus-PLoc: A fusion classifier for predicting the subcellular localization of viral proteins within host and virusinfected cells. Biopolymers, 85, 233-240
    • (2007) Biopolymers , vol.85 , pp. 233-240
    • Shen, H.B.1    Chou, K.C.2
  • 63
    • 84962086169 scopus 로고    scopus 로고
    • Identification of immunoglobulins using Chou's pseudo amino acid composition with feature selection technique
    • Tang, H., et al. (2016). Identification of immunoglobulins using Chou's pseudo amino acid composition with feature selection technique. Mol. Biosyst., 12, 1269-1275
    • (2016) Mol. Biosyst , vol.12 , pp. 1269-1275
    • Tang, H.1
  • 64
    • 84939476364 scopus 로고    scopus 로고
    • MultiP-SChlo: Multi-label protein subchloroplast localization prediction with Chou's pseudo amino acid composition and a novel multi-label classifier
    • Wang, X., et al. (2015). MultiP-SChlo: multi-label protein subchloroplast localization prediction with Chou's pseudo amino acid composition and a novel multi-label classifier. Bioinformatics, 31, 2639-2645
    • (2015) Bioinformatics , vol.31 , pp. 2639-2645
    • Wang, X.1
  • 65
    • 80755158862 scopus 로고    scopus 로고
    • ILoc-Plant: A multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites
    • Wu, Z.C., et al. (2011). iLoc-Plant: a multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites. Mol. BioSyst., 7, 3287-3297
    • (2011) Mol. BioSyst , vol.7 , pp. 3287-3297
    • Wu, Z.C.1
  • 66
    • 84858255890 scopus 로고    scopus 로고
    • ILoc-Gpos: A Multi-Layer Classifier for Predicting the Subcellular Localization of Singleplex and Multiplex Gram-Positive Bacterial Proteins
    • Wu, Z.C., et al. (2012). iLoc-Gpos: A Multi-Layer Classifier for Predicting the Subcellular Localization of Singleplex and Multiplex Gram-Positive Bacterial Proteins. Protein Peptide Lett., 19, 4-14
    • (2012) Protein Peptide Lett , vol.19 , pp. 4-14
    • Wu, Z.C.1
  • 67
    • 79959667141 scopus 로고    scopus 로고
    • ILoc-Virus: A multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites
    • Xiao, X., et al. (2011). iLoc-Virus: A multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites. J. Theor. Biol., 284, 42-51
    • (2011) J. Theor. Biol , vol.284 , pp. 42-51
    • Xiao, X.1
  • 68
    • 84875074764 scopus 로고    scopus 로고
    • IAMP-2L: A two-levelmulti-label classifier for identifying antimicrobial peptides and their functional types
    • Xiao, X., et al. (2013). iAMP-2L: A two-levelmulti-label classifier for identifying antimicrobial peptides and their functional types. Anal. Biochem., 436, 168-177
    • (2013) Anal. Biochem , vol.436 , pp. 168-177
    • Xiao, X.1
  • 69
    • 84973610882 scopus 로고    scopus 로고
    • IROS-gPseKNC: Predicting replication origin sites in DNA by incorporating dinucleotide position-specific propensity into general pseudo nucleotide composition
    • Xiao, X., et al. (2016). iROS-gPseKNC: predicting replication origin sites in DNA by incorporating dinucleotide position-specific propensity into general pseudo nucleotide composition. Oncotarget, 7, 34180-34189
    • (2016) Oncotarget , vol.7 , pp. 34180-34189
    • Xiao, X.1
  • 70
    • 84962586763 scopus 로고    scopus 로고
    • Recent progress in predicting posttranslational modification sites in proteins
    • Xu, Y., and Chou, K.C. (2016). Recent progress in predicting posttranslational modification sites in proteins. Curr Top Med Chem, 16, 591-603
    • (2016) Curr Top Med Chem , vol.16 , pp. 591-603
    • Xu, Y.1    Chou, K.C.2
  • 71
    • 84873575437 scopus 로고    scopus 로고
    • ISNO-PseAAC: Predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition
    • Xu, Y., et al. (2013). iSNO-PseAAC: Predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One, 8, e55844
    • (2013) PLoS One , vol.8 , pp. e55844
    • Xu, Y.1
  • 72
    • 84885156363 scopus 로고    scopus 로고
    • ISNO-AAPair: Incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins
    • Xu, Y., et al. (2013). iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ, 1, e171
    • (2013) PeerJ , vol.1 , pp. e171
    • Xu, Y.1
  • 73
    • 84899856397 scopus 로고    scopus 로고
    • IHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition
    • Xu, Y., et al. (2014). iHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition, Int. J. Mol. Sci., 15, 7594-7610
    • (2014) Int. J. Mol. Sci , vol.15 , pp. 7594-7610
    • Xu, Y.1
  • 74
    • 84905982402 scopus 로고    scopus 로고
    • INitro-Tyr: Prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition
    • Xu, Y., et al. (2014). iNitro-Tyr: Prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One, 9, e105018
    • (2014) PLoS One , vol.9 , pp. e105018
    • Xu, Y.1
  • 75
    • 84908544636 scopus 로고    scopus 로고
    • Molecular science for drug development and biomedicine
    • Zhong, W.Z., and Zhou, S.F. (2014). Molecular science for drug development and biomedicine. Int. J. Mol. Sci., 15, 20072-20078
    • (2014) Int. J. Mol. Sci , vol.15 , pp. 20072-20078
    • Zhong, W.Z.1    Zhou, S.F.2
  • 76
    • 54749084166 scopus 로고    scopus 로고
    • An intriguing controversy over protein structural class prediction
    • Zhou, G.P. (1998). An intriguing controversy over protein structural class prediction. J. Protein Chem, 17, 729-738
    • (1998) J. Protein Chem , vol.17 , pp. 729-738
    • Zhou, G.P.1
  • 77
    • 84941791396 scopus 로고    scopus 로고
    • Current progress in structural bioinformatics of proteinbiomolecule interactions
    • Zhou, G.P. (2015). Current progress in structural bioinformatics of proteinbiomolecule interactions. Med. Chem., 11, 216-216
    • (2015) Med. Chem , vol.11 , pp. 216
    • Zhou, G.P.1
  • 78
    • 0037233515 scopus 로고    scopus 로고
    • Subcellular location prediction of apoptosis proteins
    • Zhou, G.P., and Doctor, K. (2003). Subcellular location prediction of apoptosis proteins. Proteins, 50, 44-48
    • (2003) Proteins , vol.50 , pp. 44-48
    • Zhou, G.P.1    Doctor, K.2
  • 79
    • 84946761038 scopus 로고    scopus 로고
    • Perspectives in medicinal chemistry
    • Zhou, G.P., and Zhong, W.Z. (2016). Perspectives in medicinal chemistry. Curr. Topics Med. Chem., 16, 381-382
    • (2016) Curr. Topics Med. Chem , vol.16 , pp. 381-382
    • Zhou, G.P.1    Zhong, W.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.